
Chapter 2

Theory

The work described within this thesis is based upon the classical pair - potential de-

scription of the lattice. This is one of the most common computational techniques

used in the atomistic simulation of solids and to describe point defects in materi-

als. Their success can be accredited to the fact that they require comparitively less

computer time for solving problems, than do their quantum mechanical equivalents.

2.1 Historical Overview Of Computer Simulation

2.1.1 Bulk Simulations

Theoretical studies of solids and surfaces have become increasingly common in the

past 30 or so years, due to the availability of progressively cheaper and more powerful

computers. This has also been parallelled by improvements in the methodologies

[35, 36, 37] and [38].

Initial studies used classical pair potential models to study highly ionic materials

12



Theory

such as the alkali [39, 40] and alkaline earth halides, [41, 42]. Presently a number of

more complex and technologically relevant materials have been modelled by a variety

of techniques: including electronic materials such as High TC oxides [43, 44], alumino

silicates such as zeolites [45, 46] and refractory ceramics such as Alumina [47, 48] to

name a few examples. In addition to static studies, there have been a number of

classical molecular dynamics studies based on solving Newton’s equations of motion.

Such studies have been able to shed light on processes such as melting and evaporation

[49, 50]. More recently, computer simulations have been used to study the catalytic

reactions at surfaces [51] and in zeolite cages [52].

Finally, the recent releases of new more user friendly codes [53] and access to

molecular visualisation software [54, ?] will undoubtedly play an important role in

extending modelling studies of complex materials and important reactions.

2.1.2 Surfaces

In comparison to the simulation of bulk materials the theoretical study of surfaces

and interfaces is a relatively new field. Seminal studies were carried out by Tasker

[55, 56] and Mackrodt [57] on the surfaces of MgO and Al2O3 respectively. Indeed,

the technique has been so successful that recently it has become possible not only to

predict the atomic structure of ionic surfaces [58, 59] but also crystal morphologies;

both of ionic [60] and covalent systems [61, 62].

Recently, simulations have been carried beyond merely studies of free surfaces

to the modelling of thin films [63, 64], and the development of interfacial models

[65]. Such models may eventually lead to models of grain boundary behaviour, which

dominate the properties of polycrystalline materials.
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Finally, the work of Schluger [66] has shown that it is possible to model the

behaviour of an AFM tip on a surface. Consequently this technique has begun to

make predictions for the very experimental methods on which the model parameters

for the initial simulations were based.

The present review has only given a few examples of the wealth of work employing

atomistic techniques. More comprehensive reviews of the techniques and literature

can be found in the articles edited by Harker and Grimes [35], [36], and the numerous

articles written by Catlow such as [38], [67], and [68].

2.2 Born Model of Ionic Solids

Classical simulation is based upon the description of the lattice in terms of the Born

ionic model [69]. The crystal is assumed to be composed of spherical formally charged

ions.

Such ionic crystals can be described in terms of the interatomic forces between

the ions as a function of their atomic positions (the potential model). Here forces

are resolved into a Coulombic contribution and the short range force, such that the

lattice energy is given by

ETotal =
∑

(

q1q2

rij

+ Eshort−range

)

(2.1)

where Eshort−range is the ‘short range’ energy between the ions i and j. The Coulombic

contribution corresponds to the electrostatic interactions between the ions. In the

present work formal charges have been assumed, consequently the electrostatic energy

is pre-defined, and the quality of the model is dependent on an accurate calculation

of short range energy.
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2.2.1 The Short Range Potential

The short range force has both repulsive and attractive energy contributions. The

repulsive interactions arise from the overlap of the electron clouds which results in an

increased nuclear repulsion as the ions are brought closer to each other by bond for-

mation. A second contribution to the repulsive energy arises from the Pauli exclusion

principle, due to a change in the confinement of the electron. The attractive contri-

bution occurs through the formation of instantaneous dipoles, these induce similar

dipoles in neighbouring ions, which act in a comparable way. When such behaviour

correlates across the entire crystal or macromolecule, it results in an overall attractive

force. The magnitude of this force is dependent on the ‘hardness’ or polarisability of

the ions and is greater in so called ‘soft’ ions e.g. large ions such as I−, which have

loosely bound outer electrons.

Mathematically the short range energy can be expressed as a binomial expansion,

Eshort−range =
∑

ij

Sij +
∑

ijk

θijk +
∑

ijkl

Tijkl..... (2.2)

where Sij refers to all two body interactions, θijk refers to all three body interactions

(bond bending), Tijkl refers to torsional interactions and so on. In many ionic solids

the two body forces tend to dominate as they have isotropic structures. In addition,

many two body potential parameters are derived from emprical fitting (discussed in

section 2.3) which effectively incorporate any residual many body contributions into

these parameters. Consequently higher order terms are omitted in the present work,

and will not be discussed further.

As mentioned above, the Coulombic contribution is a constant in the present work,

consequently the success of any simulation study is dependent on the description of the
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short range energy. The quality of this model is limited by the analytical form chosen

to describe the potential and also the numerical values of the variable parameters

employed within the given function.

Several analytical funtions may be used to represent the two body interaction.

The simplest being the harmonic interaction to represent bonding,

Sij(r) = 1/2k(r − re)
2 (2.3)

where re is the equilibrium bond distance. This description is perfectly acceptable

for small deviations from the equilibirium distance, which still exhibit harmonic be-

haviour. However for a more refined description, which is valid at large separations

a modified version of this potential is used, a Morse interaction:

Sij(r) = D[1 − exp[−β(r − re)]]
2 (2.4)

where D is the dissociation energy of the bond, re is the equilibrium bond length and

β is a variable parameter determined from spectroscopic data. This analytical form

is often used for the modelling of covalent molecules.

Non - bonded interactions are commonly represented by the Lennard - Jones

potential,

Sij(r) =
A

r12
−

B

r6
(2.5)

where A and B are parameters which represent the repulsive and attractive forces

respectively. This potential has been used successfully to model liquids [70] and

metals [71]. For inorganic solids the most commonly used potentials are the Born -
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Mayer and Buckingham interactions. Equation 2.6 is the Born - Mayer interaction

which is a repulsive potential and is used to model ‘hard’ cation - anion interactions,

Sij(r) = Aexp(−r/ρ) (2.6)

for ‘soft’ ion interactions an attractive term is added to this function, to form a

Buckingham.

Sij(r) = Aexp(−r/ρ) −
C

r6
(2.7)

the terms A, ρ, and C are three variable parameters. Roughly speaking, these param-

eter are dependent on the ion size, hardness and dispersive effects respectively. The

present work predominantly uses the Buckingham and Born-Mayer analytical forms.

An important point about such analytical forms is that they converge to zero

when r = ∞. Hence in computer simulations a cut off is employed to keep the

computational time to a realistic duration. Nonetheless, the cut off must not be too

small otherwise the function will not be close enough to zero which may affect the

lattice energies (Figure 2.1).

2.3 Potential Derivation

As mentioned previously the success of any simulations is dependent not only on the

choice of function but also on the values of the parameters. The present section deals

with methods for the determination of parameters for Buckingham and Born-Mayer

interactions.
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Figure 2.1: The lattice energy as a function the potential cut-off for CeO2
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2.3.1 Empirical Derivation

This commonly used method has the advantage of being a relatively simple way to

derive reliable parameters; many of the potentials in the present work have been

calculated in this way. The technique involves varying the parameters of the function

iteratively, such that they give the best fit to experimental values which are dependent

on the potential model such as: the unit cell volume, experimental lattice parameter,

phonon dispersion curves, and the dielectric and elastic constants of the system in

question. This technique has been automated to a certain extent in the code GULP

[53], by the use of a linear least squares fitting routine. The method is summarised

in the flow chart, Figure 2.2.

The disadvantage of this method is that it effectively relies on a single point on

the potential energy hyper-surface; that corresponding to the equilibrium interionic

separation of the system. Hence, it is assumed that the potential parameters will

accuratly reproduce the short range force at a distance significantly different from

the equilibrium separation, Figure 2.3, at which they were derived

Recently [72], [59], this method has been improved upon, by fitting the potential

to several different structures simultaneously. Hence the parameter are defined with

respect to several different ionic separations i.e the equilibrium separation of the

different structures. Consequently, the potential derived by this method should be

significantly more reliable when used in defect calculations and at surfaces where the

intrinsic distances may deviate significantly from those in the bulk material.
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Figure 2.2: Flow chart representation of empirical potential derivation
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Figure 2.3: Interionic distances

2.3.2 Electron Gas Potentials

This is a method based on quantum mechanical techniques [73, 74] . The interaction

between two atoms is calculated assuming that each ion has a spherically symmetric

charge distribution whose wavefunction is determined either numerically or analyti-

cally. Both methods assume a one electron wavefunction for the ion and express it

in terms of a single Slater determinate. Once the ionic charge densities have been

calculated the total energy (ET ) of the two interacting ions is written as the sum of

seperate energy components.

ET = EElec + EKe + EExch + ECorr + EDisp (2.8)

Where, EElec is the electronic energy contribution, EKe is the kinetic energy, EExch

the exchange energy, ECorr the correlation energy, and EDisp the dispersive contribu-

tion to the total energy. The potential parameters can be derived by fitting an

analytical form to the variation of the total energy as a function of distance. What

makes this method so computationally efficient is that EKe, ECorr, and Exch can be

21



Theory

expressed as being proportional to specific powers of the electron density [74]. A more

detailed discuss about electron gas potentials is given by Harding and Harker in [75].

2.3.3 Empiricised Potentials

It has been shown [11], [76] that a reliable model of the short range forces cannot nec-

essarily be derived if potentials from different sources are combined together. This

is found to be especially true when electron gas potentials are mixed with empir-

ically derived potentials. However, electron gas potentials are incredibly useful in

cases where no experimental data are available; such as in the modelling of transition

states and point defects. Nevertheless, such potentials can be combined by the tech-

nique of empiricisation. This entails finding the difference between an appropriate

fitted potential and its electron gas equivalent. This difference can then be added

to the required electron gas potential. The resulting ‘empiricised potential’ is more

compatable with the fitted potentials. Figure 2.4 shows a graphical representation of

this method for the derivation of a Ce3+ - O2− potential.

2.3.4 Other Methods

In addition to the techniques used in the present work, several other methods of pa-

rameter derivation exist. The most common is the use of quantum mechanical meth-

ods to determine the potential energy hypersurface. By determining the interaction

energy for a range of ionic separations or molecular configurations, a description of

the short range energy can be derived. The parameters of the function (e.g. A, ρ,

and C for a Buckingham potential) can then be calculated using a least squares fit to

the hypersurface [77], [78]. The advantage of this method is that the potentials are
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Figure 2.4: Empiricising Potentials
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Figure 2.5: The shell model

valid for a range of interatomic separations. However, such methods tend to be very

computationally expensive which makes them less attractive at present. No doubt,

as computing power increases they will become more common.

2.4 The Shell Model

The parameters we have discussed so far assume the electronic orbitals are fixed and

have little effect on the lattice energy. Obviously, this is not a completely accurate

picture of a ‘real’ system. The electron clouds can polarise to a certain extent, the

magnitude of which is dependent on the nature of the system being studied.

One of the simplest and most successful methods for taking into account the

polarisation of ions within the Born model is the shell model developed by Dick

and Overhauser [79]. In this model the ion is treated as consisting of a spherical
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massless shell, of charge Y, and a core of charge X. The core is bound to the shell

by a harmonic spring of force constant, k. The charge state of the ion is equal to

X+Y. The polarisation is represented by the displacement of the shell relative to

the core (Figure 2.5). The degree of polarisation is dependent on the value of the

harmonic spring constant and the shell charge. The free ion polarisabilty is given by

the equation,

α = 14.993
Y 2

k
(2.9)

where Y is in units of e and k is in evÅ−2.

The shell model is primarily used for the modelling of anions, where polarisa-

tion effects can be of significant importance. Nonetheless, the shell model has been

sucessfully applied to cations, in particular heavy ions such as U4+ [80, 81].

An advantage of the shell model is its ability to couple the short range potentials

with the polarisabilities (Figure 2.6). This coupling is achieved by assuming that any

interactions between ions only occur via the shells. The physical basis of the model

is that the short range interactions are a result of electron cloud interactions. These

electron clouds can be polarised by nearby ions. Given this, the shell can be viewed

as representing the valence electrons (although this is not completely accurate), hence

the short range force must act between the shells.

2.5 Perfect Lattice Simulation

The initial step for any simulation study is the calculation of the lattice energy of the

perfect crystal by equation 2.1. Other crystal properties such as the elastic constants
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Figure 2.6: The coupling of shell model and the Born ionic model

and dielectric constants and phonon frequencies can be calculated by taking the first

and second derivatives of this energy with respect to the atomic coordinates.

2.5.1 The Ewald Summation

The Coulombic part of equation 2.1 is a long range interaction, consequently the

convergence of the summation is non-existent when carried out in real space. In

addition, the convergence is conditional and dependent on the number of atoms in

the summation.

The solution to the problem was provided by Ewald [82], the technique entails

resolving the electrostatic term into two parts; one is summed in real space and the

other in reciprocal space. The electrostatic potential of an ion can be resolved into

two parts,
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φ = φ1 + φ2 (2.10)

φ1 is based on a lattice of Gaussian charge distributions situated at each ion site.

The sign of this charge distribution is the same as that for the real ion. However,

the charge contribution of the ion for which the potential is being calculated must be

subtracted. Thus, φ1, can be expressed as,

φ1 = φL − φi (2.11)

φ2 is based on a complete lattice of point charges with an additional Gaussian dis-

tribution of opposite charges (Figure 2.7). The reason for the use of a Gaussian

charge distribution is that by a suitable choice of the peak width parameter, η, rapid

independent convergence of both φ1 and φ2 can be achieved.

φL, φi, and φ2 can be related to the charge density, ρ, which in the case of a

Guassian distribution is

ρ = qt

(

η

π

)3/2

exp(−ηr2) (2.12)

where qt is the ion charge. φL can be given by,

φL =
4π

V

∑

G

S(G)
1

G2
exp

G2

−4η2
(2.13)

where S(G) is,

S(G) =
∑

t

qtexp(−iG · rt) (2.14)

where G is the reciprocal lattice vector and V is the unit cell volume. For the reference

ion i, the potential is given by the expression,
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Figure 2.7: The Gaussian charge distribution for φ1 andφ2.

−φi = −2qi

(

η

π

)1/2

(2.15)

For φ2,

φ2 =
∑

l

ql

rl

F (η, rl) (2.16)

where F(x) is given by,

F (x) = (2π1/2)
∫ ∞

x
exp(−s2)dt (2.17)

The optimum value of η was determined by Catlow and Norgett, [83], to be given by

the expression,

η =

(

Nπ3

V 2

)1/6

(2.18)

where N is the number of species (both ions and shells), and V is the unit cell volume.

For a more comprehensive explanation the reader is referred to Kittel [84].
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2.5.2 Energy Minimisation Techniques

From the discussion in the previous sections, it is possible to determine the lattice

energy of the system. However, to determine equilibrium geometries the potential en-

ergy must be minimised with respect to the systems atomic coordinates, i.e. the unit

cell vectors and internal parameters. The system can be minimised if the coordinates

are adjusted iteratively until the forces on the atoms are zero, i.e.:

∂U

∂r
= 0 (2.19)

where U is the lattice energy and r is the coordinate system.

Several minimisation algorithms are available, each having its own particular

merit. These include the Conjugate Gradient [85], Steepest descent [85], and the

Newton-Raphson methods [86]. The primary factors in determining the choice of

minimisers are their computational cost and ability to avoid local minima and transi-

tion states (see Figure 2.8) which satisfy the minimisation criteria that equation 2.19

is zero.

The two methods used in the present study are the Conjugate Gradient and the

Newton Raphson techniques.

Conjugate Gradient

The value of the position vector x at the (n+1)th iteration is related to its nth

iteration by,

x(n+1) = xn + αnSn (2.20)
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Figure 2.8: A typical example of a potential energy hypersurface
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where α is a constant modified at every iteration to improve the efficiency of the

algorithm. S is given by the expression

Sn = −gi−1 + βi (2.21)

where, β is,

β =
gT

i−1
.gi−1

gT

i−2
.gi−2

(2.22)

and gi are the first derivatives of the vectors and the ‘T’ notations indicates the

transpose of the vector. This method has a very low computational cost (as only the

first derivatives are calculated) and very rapid convergence at large distances from the

minimum. However, as it approaches the minimum the method becomes inefficient.

Newton-Raphson

Convergence can be improved by the use of second derivatives in addition to the first.

In the Newton-Raphson technique, x(n+1) is given by,

x(n+1) = xn − Hi.gi (2.23)

where H is the inverse of the second derivative matrix, also known as the Hessian

matrix. The second derivative matrix contains the second derivatives of the energy

with respect to the ion coordinates. The Hessian matrix is not recalculated at every

iteration as it makes the computation prohibitively expensive. Instead it is updated

using various algorithms such as the Davidson, Fletcher and Powell method [87]. To

avoid too great a degradation in the accuracy of the Hessian, it is recalculated every
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10-20 cycles. This approach is particularly good at achieving rapid convergence close

to the minimum.

2.5.3 Constant Pressure and Volume Minimisation

The minimisation of the lattice geometry to equilibrium can be either done at a

constant volume, or at a constant pressure. Constant volume minimisation, as the

name suggests, is where the unit cell volume is kept constant during minimisation.

This is achieved by only varying the internal ion positions of the unit cells to remove

the ionic strains. The set of lattice coordinates r
′
are related to the lattice coordinates

r by the expression

r
′

= E · (r + δr) (2.24)

where E is a Voigt matrix representation of the indepedent bulk strain components,

δε. When minimising to constant volume the strain in the ion coordinates is removed,

∂U

∂δr
= 0 ≡ g (2.25)

Hence it can be shown that the optimum displacement of an ion at point r from

equilibrium is

δr = −W−1
rr · g (2.26)

where W−1
rr is the Hessian matrix. If the energy of the system were perfectly harmonic

with respect to the strain, equation 2.26 would give the value of r, and hence the lattice

energy at the minimum. However in reality this is not the case the equation must be

solved by an iterative procedure.
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For constant pressure calculations, in addition to the energy being minimised with

respect to the ionic coordinates, it is also minimised with respect to the bulk strains

acting upon the cell. These bulk strains are defined such that they transfer every

vector in the lattice to r
′
, where

r
′

= (E + I) · r (2.27)

where I is known as the identity matrix and E is the strain matrix discussed previously.

The strains are calculated assuming Hooke’s Law, with a constant of proportionality

given by the elastic constant tensor. The stress is the first derivative of the lattice

energy with respect to the strains, thus the bulk strain, δε, is given by

δε =
∂U

∂δε
· C−1 (2.28)

where C is the elastic constant matrix. More detailed discussion can be found in

Catlow and Norgett [83] and [37]

2.6 Defect Lattice Simulation

The properties of many materials are not only dependent on their perfect lattice

properties but also on the defects present within them. Often this can be critical,

such as in controlling the mechanical strength of a material. Consequently, studies of

defects in the lattice are of considerable importance.

Once a valid perfect lattice model has been derived, it can be used to study defects

in the lattice. The inclusion of such defects within the lattice is a rigorous test of

the potential model. The distortion of the lattice ions caused by the presence of
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defects will change the interionic distances considerably. Hence the potentials must

be robust enough to deal with such changes in the interionic spacing. In an ionic

lattice the pertubations caused by a charged defect can be quite large and long range.

Consequently, the lattice must undergo further relaxation to reach a new equilibrium

geometry.

The defective lattice is treated as consisting of two regions (Figure 2.9) which

are considered at different levels of approximation. The inner region (region I) is

treated atomistically; the atoms are relaxed explicitly to zero force. The outer region,

region II, extends to infinity. The forces arising from the defect are considered to be

sufficiently weak that the response of the lattice to the defect can be expressed by the

Mott-Littleton approximation [88]. This describes the response of the (cubic) lattice

at a distance r, from the defect centre in terms of polarisation,

P =
4π

V

qr

|r|3

(

1 −
1

ε0

)

(2.29)

where P is the polarisation of the crystal per unit cell, ε0 is the static dielectric

constant, V is the unit cell voloume and q is the defect energy.

The outer region II is further partitioned into region IIa and region IIb. The forces

and displacements on the region IIa ions are determined by the Mott - Littleton

approximation. The ions are reacting to the displacements of the region I species

which gives rise to short and long range interaction energies, which are calculated

explicitly. The positions of the ions in region IIb are not altered and their response

to a defect (i.e. the energy change) can be calculated directly by the Mott-Littleton

approximation.

The partitioning can be explained using the following mathematics. The total
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Figure 2.9: The two region methodology

energy of the system can be expressed as a function of the displacement of the ions

in region I, r, and region II, ζ. The energy is given by the expression

ET = E1(r) + E2(r, ζ) + E3(ζ) (2.30)

where E1 is the energy of the region I, E2 is the interaction energy between region I

and region II, and E3 is the energy change of region II.

E3(ζ) cannot be solved exactly as it contains an infinite number of displacements.

However, if region I is large enough then the displacements in region II are small

enough to be treated harmonically and E3 can be represented by a quadratic function,

E3(ζ) =
1

2
(ζ.A.ζ) (2.31)

where A is the force constant matrix. Substitution of this expression into equation
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2.30 and then differentiating it with respect to ζ, results in

∂ET

∂ζ
=

∂E2(r, ζ)

∂ζ
+ A.ζ (2.32)

At equilibrium ∂ET /∂ζ = 0 and ζ = ζe, thus

∂E2(r, ζ)

∂ζ
= −A.ζ (2.33)

Thus equation 2.30 can be expressed as,

ET = E1(r) + E2(r, ζ) −
ζ

2

(

∂E2(r, ζ)

∂ζ

)

r,ζ=ζe

(2.34)

Hence the dependence of ET on E3 is removed and the energy can be expressed as the

interaction within region I and the interaction between region I and region II. Thus

the calculation scheme for the defect energy is

(i) The energy of region I ions is minimised and r is calculated using

∂E/∂rζ=constant = 0.

(ii) The Mott-Littleton calculation is perfomed to derive the displacements of

region IIa.

(iii) The energy of E1 is explicitly summed.

(iv) E2 and its first derivatives are calculated explicitly for the ions in region IIa.

(v) The Mott-Littleton approximation is used to calculate the displacements in

region IIb assuming a continuum response to the net defect charge.

The techniques mentioned in this and the previous section have been incorporated

in the CASCADE [89] and GULP [53] codes.
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2.7 Surface Simulation

Many of the techniques used in the simulation of bulk systems can be readily applied

to surface studies given a few minor modifications. Primarily, whilst bulk calculations

employ a crystal lattice that extends to infinity in three dimensions, surfaces by their

nature are finite in one direction. The required surface is thus constructed from a block

repeated periodically in two dimensions (Figure 2.10). The repeat block is divided

into two regions, analogous to that discussed in the previous section on bulk defect

simulations. Region I contains the free surface, within it all the atoms are relaxed

explicitly to their energy minimum. Region II marks the beginning of the bulk and

is there to model the effect of the bulk ions on the region I atoms. However, unlike

bulk simulations region II does not extend to infinity. Consequently, region II must

be large enough to ensure that its finite size does not have an energy consequence on

the ions at the bottom of region I. The optimum size is determined by progressively

increasing the region II size (for a given region I size) until there is no change in the

total energy of region I. In addition, region I must be large enough to ensure that the

ions at the bottom of the region do not move significantly during relaxation.

Another modification in the modelling of surfaces is the summation of the elec-

trostatic terms. The three dimensional Ewald sum must be modified to account for

the discontinuity in one direction. This was first achieved by Parry [90], [91] for two

dimensional slabs. A more comprehensive treatment was derived by Heyes et al [92].

Mathematically the two dimensional Ewald sum can be expressed as,

UEwald
ab = UReciprocal

ab + UReal
ab (2.35)

Heyes showed that
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UReciprocal
ab =

π

A

{

− 2zaberfc(Gzab) − 2
exp(Gz2

ab)

π1/2G

+
∑

k6=0

exp(ik.rab)

|k|

[

exp(|k|zab)erfc

(

|k|

2G
+ Gzab

)

+ exp(−|k|zab)erfc

(

|k|

2G
− Gzab

)

]

}

(2.36)

and

UReal
ab =

∑

l

erfc(G|rab + l|)

|rab + l|
(2.37)

where zab is the vertical separation between ions a and b. A is the surface area of the

simulation cell and k and l are the two dimensional reciprocal lattice vectors. G is a

Gaussian weighting factor and determines how the sum is divided between real and

reciprocal space (analogous to η for the three dimesional Ewald summation) and is

given by the expression [93],

G =
(

π

A

)1/2

(2.38)

Such methods have been encoded in surface codes such as MIDAS [94] and the

code used in the present work, MARVIN [95].

2.8 Molecular Dynamics

So far, the techniques discussed do not include temperature effects and assume that

lattice vibrations behave harmonically. This is valid for small displacements from

the equilibrium position. Consequently, within the static model the temperature of

the lattice is that of the experimental data used as a basis for fitting the interatomic
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Figure 2.10: Surface simulation methodology

potentials. Such an assumption is adequate when simulating room temperature phe-

nomena or comparing with experimental results carried out at room temperatures.

However, at higher temperatures the quasi-harmonic approximation will progressively

become less valid and the thermal vibrations of the lattice must be accounted for more

explicitly.

Classical molecular dynamics, as the name implies, models the dynamic behaviour

of the ions within the lattice. This is achieved by solving the Newtonian equations

of motion for the individual ions [96], [97]. The forces acting between the ions can

be derived from the pair potentials, by taking the first derivative of the energy. Once

the forces on each of the individual ions are known, the acceleration of each species

can be calculated using Newton’s second law of motion;

F = ma (2.39)
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If the initial velocity and the position are known, then the velocity and position

at time (t+δt) can be predicted using

v(t+δt) = vt + aδt (2.40)

and

r(t+δt) = vtδt +
1

2
a(δt)2 + rt (2.41)

provided that the acceleration is a constant. Under such circumstances the new

predicted velocities must not violate the law of conservation of momentum. Thus,

∑

i

mvi(t+δt) =
∑

i

mvi(t) (2.42)

The above equations rest on the assumption that the acceleration is a constant.

However, this is not the case since the forces between the ions are a function of the

ion positions. Consequently, the change in the forces (and hence the acceleration)

as a function of δt must be accounted for in the simulations. Several algorithms are

available to do this, the method used in the present work is a predictor - corrector

algorithm [98], [99]. The position and velocity are predicted using equations similar

to 2.40 and 2.41. The acceleration is calculated using the expression

aP
(t+δt) = a(t) + btδt (2.43)

where b is the third derivative of the position with respect to time. The superscript

P indicates this is the predicted acceleration. When the atoms are moved to their

predicted positions, the acceleration is recalculated from equation 2.39. The difference
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between the predicted value of the acceleration and the ‘correct’ acceleration can be

expressed as,

∆a(t+δt) = aC
(t+δt) − aP

(t+δt) (2.44)

This error can be added to the predicted values of position and velocity to correct

them, thus,

rC
(t+δt) = rP

(t+δt) + c0∆a(t+δt) (2.45)

vC
(t+δt) = vP

(t+δt) + c1∆a(t+δt) (2.46)

aC
(t+δt) = aP

(t+δt) + c2∆a(t+δt) (2.47)

where c0, c1, and c2 are coefficients that are chosen to give optimum stability.

The size of the time step, δt, must be chosen such that it is not so large as to lead

large differences between the predicted and corrected values of positon etc. However,

it must not be so small so as to make the calculation require are unrealistically large

amount of computer time. Generally, δt is treated as being approximately 1x10−15.

The assigning of the initial parameters (velocity, position, and acceleration) is

generally done by assigning them randomly using a Gaussian or Boltzmann like dis-

tribution. Alternatively, it is possible to use a recursive algorithm. This derives the

initial accelerations for very small time step from the initial atomic positions and the

interatomic potentials. By applying this recursively until all the atomic derivatives

of position are consistent, the atoms will only move from their initial positions to an

extent appropriate to the forces resulting from the other ions in the system.
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The overall procedure can be listed as;

(i) Assign initial values of velocity, acceleration and position etc using either a

random distribution or an algorithm such as the above.

(ii) Predict the position, velocities, acceleration etc at time t+δt using the current

values.

(iii) Evaluate the forces and thus the acceleration for the new positions.

(iv) Correct the predicted values using the new accelerations.

(v) Calculate any quantities of interest such as the energy, root mean square

displacement, etc.

(vi) Return to step (ii)

The effect of increasing the temperature can be included by the fact that as the

energy of a system is increased the velocities of the atoms also increase, thus,

T =
2 < 1

2
mv2 >

(3n − 6)kB

(2.48)

where kB is Boltzmann’s constant and n is the number of atoms in the system.

More detailed discussion of molecular dynamics methodolgies can be found in

Allen and Tildesley [70] and the references within it. The code used in the present

study, PENICILLIN, [50] was written at the Royal Instituion by A. Dornford-Smith

and further modified by V. Bulatov at Imperial College.

2.9 Summary

This chapter reviews the literature on the computer simulation of surfaces and solids.

In addition we have discussed briefly the Born ionic model, the shell model and

42



Theory

the methods used to exploit these basic descriptions of ion - ion interaction through

computational modelling.
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