
Chapter 2

Atomistic Simulation: Bulk and

Surface Methods

“It is only after having failed at many attempts that one succeeds in preventing

the mutually attractive balls from touching.”

- Charles Augustin Coulomb

The Second Electricity and Magnetism Memoir, 1785

As the number of transistors per integrated circuit persistently adheres to the

exponential growth pronounced in Moore’s Law [64], computers will continue to

become more powerful. It is therefore now possible to model systems which were

unthinkable ten years ago. For example, atomistic simulations have recently been

used in the biological realm to determine complex protein structures [65]. Atomistic

forces can be determined in two ways: classically (based on Newtonian mechanics)

and quantum mechanically. Although this thesis predominantly deals with classical

simulations, one should not disregard quantum mechanical studies which are inher-

ently more accurate. The undesirability of quantum mechanical calculations arises

when confronted with limited computing resources. Per ion modelled, classical cal-
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culations are far more efficient and less computationally taxing, allowing for a larger

number of atoms to be considered. Eventually, when processing power has substan-

tially increased, quantum mechanical simulations will be much more amenable to

larger systems.

The first classical atomistic simulations carried out, were those of Boswara and

Lidiard who attempted to determine Schottky defect formation energies in NaCl

structured alkali halides and cesium halides [66, 67]. In fact, most of the early

calculations considered highly ionic and rather simple compounds. Transition metal

oxides were investigated in the 1970’s, using a similar methodology [68, 69]. The

Harwell Laboratory was a major driving force for the continuation and progression of

atomistic simulation, focusing on the calculation of basic UO2 defect energies [70,71]

as well as fission product behaviour [36, 72]. Many of the techniques pioneered in

those studies are utilized in this work.

Initial atomistic simulations were limited to the calculation of bulk defect prop-

erties. Not until Tasker’s code MIDAS [73], were surface properties able to be

calculated. The MIDAS code, though allowing for many more types of simulation,

was limited to charge neutral surfaces. The code CHAOS [74] was developed to

calculate defective surface properties. As with the initial bulk calculations, initial

surface calculations considered simple ionic systems, which were predominantly cu-

bic, e.g. MgO, CaO and NiO [75, 76]. MARVIN (Minimization And Relaxation of

Vacancies and Interstitials for Neutral Surfaces Program) is a more recent surface

code [77], based on the fundamentals used by MIDAS and CHAOS, but updated for

new potential models (to be discussed later in this chapter) and low symmetry salts

such as carbonates, sulfates and phosphates. Also updated is the ability to simply

introduce ions and molecules onto the surface, which was previously difficult with

MIDAS.
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2.1 Perfect Lattice

Ionic crystal theory can be traced back to the work of Madelung [78] and Born

[79,80]. All of the compounds considered in this thesis form ionic crystals, which is

to say that they have a regular arrangement of positively charged metal atoms and

negatively charged (in this case) oxygen atoms. The lattice of these materials can

be described in the classical manner, which assumes all ions are formally charged

and spherical and interactions between these ions obey simple central force laws.

The lattice energy is therefore:

Elattice =
1

8πε◦

(∑
i

∑
j 6=i

qiqj

rij

)
+

1

2
Φs−r (2.1)

where qi and qj are the charges of the ions i and j, rij is the ionic separation and

εo is the permittivity of free space. The first term of Equation 2.1, the Coulombic

energy, is the main interaction between ions and attracts the unlike charged ions,

accounting for the major portion of the cohesive energy of ionic materials. The

second term in Equation 2.1, Φs−r is the total short range interaction energy. Short

range forces serve to keep the unlike charged ions from collapsing upon one another

and like charged ions from becoming unbound.

The calculations carried out in this work are referred to as “static,” which is

to say that they do not account for lattice vibration explicitly or configurational

entropy at all. Rather, the lattice energy as it appears in Equation 2.1, is calculated

with the Coulombic interactions summed using a mathematical construction and

the short range interactions initially summed but then neglected after a few lattice

spacings. The minimum energy atomic configuration is achieved using energy min-

imization techniques, discussed in Section 2.1.4. This accounts for a perfect lattice.

The calculation of point defect and surface energies involve further considerations,
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discussed in Sections 2.2 and 2.3 respectively.

2.1.1 Ewald Summation

Despite the apparent simplicity of the Coulomb term in the equation for lattice

energy, it is actually very difficult to compute, as it is a long range force. The spatial

interaction of long range forces typically falls off no faster than r−d, where d is the

dimensionality of the system [81]. Long range interactions give rise to rather serious

problems in regard to atomistic simulations, as they can span half the distance of

the simulation cell. Therefore, a method to handle this problem must be introduced.

The simulations used in this work make use of the Ewald summation [82].

Ewald devised a technique which sums the interactions between an ion and its

periodic images. The original derivation is rather mathematically intensive. There-

fore, the following treatment is a simplification which focuses on the significant

aspects of the method, after an unpublished paper of Shockley and Ewald (which

can be found in [83]). The lattice assumed in this description consists of spheri-

cal, non-overlapping ions, with charge of the same magnitude whether positive or

negative. The total potential at a specific lattice point can be partitioned into two

sub-potentials as:

Ψ = Ψ1 + Ψ2 (2.2)

where Ψ1 is in reciprocal space and Ψ2 is in real space. The potential Ψ1 is of a

lattice of point charges, with a Gaussian charge distribution of equal magnitude but

opposite sign superimposed on the lattice. The potential Ψ2 is that of a lattice with

a Gaussian distribution of charge fixed at each lattice point, with the same sign as

the lattice. When this potential is added to Ψ1, the overall potential is reduced to

the original set of point charges. The point of splitting the overall potential Ψ into
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two parts, is that a parameter η can be optimized to determine the width of the

Gaussian peaks, such that both parts converge quickly and independently. Catlow

and Norgett [84] determined an optimum value for this width, which is given by:

η =
6

√
Nπ3

V 2
(2.3)

where η is the width parameter, N is the total number of species and V is the unit

cell volume. The charge distribution components of Ψ1 and Ψ2 cause the Gaussian

distributions to completely drop out of Ψ, thus leaving the overall potential, Ψ, com-

pletely independent of the width parameter, η. However, the speed of convergence

is dictated by this parameter.

The definition of the Madelung constant dictates that the charge distribution on

the reference point is not considered to contribute. In other words, ions do not feel

their own electrostatic potential. Therefore, Ψ1 can be expressed as the difference:

Ψ1 = Ψa −Ψb (2.4)

where Ψa is the potential of a continuous series of Gaussian distributions of sign

the same as the actual lattice and Ψb is the potential of a single Gaussian charge

distribution on the reference ion, see Figure 2.1.

(a) Ψa (b) Ψb (c) Ψ1 = Ψa −Ψb

Figure 2.1: The development of Ψ1 from the difference of a lattice of Gaussian

distributions and a Gaussian distribution at a reference point.
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Ψa and the charge density associated with it, ρ, can be expressed in terms of a

Fourier series:

Ψa =
∑

k

cke
i(k·r) (2.5)

and

ρ =
∑

k

ρke
i(k·r) (2.6)

where ck and ρk are coefficients and k is 2π times the reciprocal lattice vectors. The

series converges as k increases and ck and ρk decrease. The charge density can be

related to the electrostatic potential by Poisson’s equation:

∇2Ψa = −4πρ (2.7)

This relation can be used to determine an expression for Ψa:

Ψa = qi

∑
j

[
qj

4π

VC

∑
k

(
1

k2
e−

k2

4η ei(k·r)
)]

(2.8)

where VC is the unit cell volume. (A complete derivation of Equation 2.8 appears

in Equations B.5 - 5.9 in the 1954 edition of Kittel’s Introduction to Solid State

Physics [83], though not in later editions, e.g. [25]).

When k = 0, the potential Ψa tends to infinity. However, as it is assumed that

the overall charge of a neutral unit cell is zero, the term k = 0 can be ignored. The

other constituent of Ψ1, is the potential at the reference point due to the central

Gaussian distribution:

Ψb =

∫ ∞

0

4πrρ dr =

√
2q2

i

εo

(η

π

)
(2.9)

Therefore, the difference of Equations 2.8 and 2.9 results in:

Ψ1 = qi

∑
j

[
qj

4π
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∑
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(2.10)
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The remaining part of the overall potential is Ψ2. It is evaluated at the reference

point and has three contributions from each lattice point:

Ψ2 =
qi

4πεo

∑
j

qi

rij

erfc(
√

η rij) (2.11)

The three contributions are therefore: the point charge associated with the ion j,

the Gaussian distribution contained in the sphere of radius rij at the j lattice point

and the Gaussian distribution occurring outside of the same sphere, see Figure 2.2.

Figure 2.2: Graphical representation of Ψ2 of the Ewald summation.

With equations for Ψ1 and Ψ2 determined, an expression for Equation 2.2 can

be formulated, making use of Equations 2.10 and 2.11:
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∑
j

[
qj

4π

VC

∑
k

(
1

G2
e−

G2

4η e−i(G·r)
)]

− 2q2
i

εo

√
η

π

+
qi

4πεo

∑
j

qi

rij

erfc(
√

η rij)

(2.12)
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2.1.2 Short Range Potential

The Ewald sum accounts for the long range, attractive Coulomb interaction, but

is unable to describe what occurs when two charged atoms are brought near one

another. Equation 2.1 accounts for this short range interaction with the term Φs−r.

It is important to understand how this term originates and what different forms

can be adopted to describe it, as the success of this study is largely a function

of the quality and moreso the accuracy with which these potentials describe this

interaction.

The charge distributions of two adjacent atoms are able to overlap if they are

brought near enough to one another. This causes two repulsive interactions, which if

the distance between these atoms becomes sufficiently small causes the overall force

between them to become repulsive, even if the ions are oppositely charged. The two

terms are (a.) the Pauli term, which is a result of the Pauli exclusion principle [85,86]

and (b.) the nuclear - nuclear repulsion. The generalized statement of the Pauli

exclusion principle is that no two fermions can occupy the same quantum state.

When electron clouds overlap (shown as charge distributions in Figure 2.3), for the

Pauli exclusion principle to be satisfied, the ground state charge distribution of

an electron is forced to occupy a higher energy state, thus creating an increase in

electronic energy. This increase in energy gives rise to the repulsion.

Figure 2.3: The electronic charge distribution as atoms near one another, where

the orange circles denote nuclei (reproduced from [25]).
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At small internuclear distances (but larger than required for the aforementioned

repulsion) there also exists an attractive force, the van der Waals - London in-

teraction. This is a relatively weak force which arises from the generation of a

spontaneously induced dipole on each of the interacting species, as was postulated

by Debye [87]. With the aid of quantum mechanics, London was able to determine

a general expression for this attraction, where the dipole arises due to the corre-

lated motion of electrons [88–90]. In the case of two identical atoms, this force

varies proportionally to r−6. Although this is a quantum mechanical effect, the

r−6 dependency can be derived from classical electrostatics. A complete derivation

for the van der Waals - London force between two hydrogen atoms can be found

elsewhere [91, 92]. However, it should be noted that this force is related to the

polarizability of ions. As such, it is generally not considered for cation - cation

interactions, where the cations tend to be small and unpolarizable [93].

Given this broad description of the short range repulsive energy, the functional

forms which can be used to describe various terms can now be explained. Equation

2.1 denotes the short range interaction as Φs−r. This term can be expanded and

expressed as:

Φs−r =
∑
ij

Φij +
∑
ijk

Φijk +
∑
ijkl

Φijkl + ... (2.13)

where ij refers to all pair interactions, ijk refers to all three body interactions,

and so on. Fortunately, the work in this thesis considers only cubic, strongly ionic

materials. These types of materials are relatively isotropic, thereby warranting the

consideration of only pair interactions (i.e. the first term of Equation 2.13). With

that established, it is now useful to discuss the various forms of the pair short range

potential that have been used in other studies.

The combination of a Coulomb term with a short range repulsive term, Φij, was
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first introduced by Born and Landé [94]:

Φij =
b

rn
(2.14)

where b and n are constants chosen to reproduce the equilibrium interionic distance

and r is the nearest distance between unlike ions. Early work using this model took

n ≈ 9. This model was later expanded when it was discovered through quantum

mechanical calculations that it could not be rigorously correct (though a surprisingly

good approximation, especially for very ionic materials such as the alkali halides).

In an attempt to update Equation 2.14 such that it accounted for the new quantum

mechanical revelations, Born and Mayer [95] introduced a short range repulsive

potential of the form:

Φij = Ae−
r
ρ (2.15)

where A and ρ are adjustable parameters. Equation 2.14 now differed from 2.15 in

that Equation 2.15 contains an exponential repulsive term. At this point, Born and

Mayer also added an attractive term to account for the van der Waals interaction,

which, as previously mentioned, had recently been calculated [88–91]. This term

took the form of C/r6, in accord with the work by van der Waals, London and Mar-

genau, where C is an adjustable parameter. Mayer [96] later altered this attractive

term for dipole quadropole interactions, such that it took the form of D/r8.

A combination of the repulsive term in Equation 2.14 and the C/r6 attractive

van der Waals term results in the so called Lennard-Jones potential [97–99]:

Φij = −C

r6
+

b

rn
(2.16)

where the first term represents the attractive van der Waals potential. Lennard-

Jones solved for b and C for several different values for n, ranging from 9 to 14.

In modern calculations, the value for n is usually 12, though the Lennard-Jones
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potential is best suited to calculations concerning liquids and gases. In this work,

only solids are considered, thus necessitating an alternative to the Lennard-Jones

potential. If the short range repulsive term from Equation 2.15 is combined with the

van der Waals attractive term, one arrives at the so called Buckingham potential

(though Born and Mayer certainly deserve at least some recognition for their effort)

[100]:

Φij = Ae−
r
ρ − C

r6
(2.17)

where A, ρ and C are the adjustable parameters whose description of the short range

interaction largely determine the success of the calculations described later in this

thesis. Figure 2.4 depicts the influence of the short range potential on the overall

ionic interaction. The derivation of these parameters is discussed in the following

section.

Figure 2.4: The overall potential for Sr2+ - O2−, and its relation to the long range

Coulomb interaction and short range Buckingham potential.

The short range parameters can be thought of as having loose physical meaning.
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A is related the hardness of the ions, ρ describes the size of the ions while C is used

to model the van der Waals interactions. This latter term can be calculated using

the Slater-Kirkwood formulae [101]. The C term for identical interacting ions can

be written as:

Cii =
3

4
α

3
2
i ·K

1
2
i (2.18)

and for non-identical ions:

Cij =
3αiαj

2[(αi/Ki)
1
2 + (αj/Kj)

1
2 ]

(2.19)

where α represents the static dipole polarizability and K is the effective electron

number (i.e. the number of electrons which contribute to the polarizability). Values

for α and K can be found elsewhere [102].

Short Range Potential Derivation

The success of the calculations described in this thesis depend critically upon the

quality of the short range potentials. Therefore, it is essential that these terms are

derived carefully in order to create an accurate description. There are essentially

two principal methods of deriving potentials: empirically or by direct calculation.

In this work, a combination of both methods was employed.

The empirical fitting of potentials has historically involved a reversed working of

the methods described in previous sections, namely varying the short range param-

eters until the structural and lattice properties agree with experimental observation

(as was done by Born and Landé [94]). Potentials are now chosen to reproduce a

variety of properties, such as: elastic constants, high frequency and static dielectric

constants and lattice energies. Any of these properties can be used in conjunction

with the crystal structure for fitting. Initial values for the parameters are selected
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and adjusted systematically via a least squares procedure:

F =
∑

[fobserved − fcalculated]
2 (2.20)

This adjustment is continued until the difference in Equation 2.20 is below a spec-

ified value. Advantages of this method include its relative simplicity as well as the

ability to describe the full behaviour of a collection of atoms, including any partial

covalency. However, there are several limitations of this method which need to be

considered. Firstly, the crystal structure of complex oxides studied here (e.g. py-

rochlores) has been determined via powder X-ray or neutron diffraction, whereas the

other properties used for potential derivation (e.g elastic constants) are determined

from large single crystals. Ideally, all data would come from the same crystal. If the

same crystal was used, differences due to issues of chemistry (e.g. stoichiometry)

would not occur. Structural data may also have inherent unreliability due to defects

in the material. Furthermore, the lattice energies of these crystals are also subject

to question due to the uncertainty in the second electron affinity of oxygen [103].

Harding et al. have closely examined the variation of the second electron affinity

of oxygen with chemical composition and nuclear structure [104]. They found that

assuming a single value of ≈ 8eV (as is usually the case) is erroneous due to this

value varying with nuclear geometry and crystal structure.

A second limitation of empirical potential derivation is that only one point of

the potential surface is calculated; namely, the equilibrium interionic separation.

This becomes increasingly problematic when considering defective systems, as the

interionic separation will shift away from the equilibrium position. To overcome the

limitation of a single point interionic separation potential, parameters can be fit to

a range of structures simultaneously (e.g. [105]). The resulting potentials relate to

the ionic separations of several different structures, see Figure 2.5, and are therefore

more transferable then if they were fit to a single structure.
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Figure 2.5: The series of compounds that the O2− O2− potential was fit to in order

to derive this potential, reproduced from [105].

Potentials which are fit through direct calculation are derived through a number

of methods, though all are based on quantum mechanics. Using techniques such

as electron gas methods [106] or ab initio calculations [107], ionic positions are

varied systematically to produce a potential energy surface that is a function of ion

position. The inter ionic potential parameters are then fit to best reproduce this

potential energy hyper surface.

An important point is that the potentials need to be derived in a consistent

manner if they are to be used together. For example, cation - oxygen potentials

describing different cations are not necessary compatible in the same simulation

if they were derived with respect to different oxygen potentials. Although it may

be useful to use empirical derivation and direct calculation in a concerted effort to
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derive a set of potentials, it has been found that potentials obtained from different

sources are generally not compatible [108].

2.1.3 Electronic Polarizability

The dielectric constant, ε, of a material is a measure of how effective an electric

field, E, is in polarizing that material and can be expressed as:

ε = 1 + 4π
P

E
= 1 + 4πχ (2.21)

where P is the polarization as defined as the dipole moment per unit volume and

χ is the electric susceptibility. All of the terms in Equation 2.21 are macroscopic

and easily measurable. In order to investigate microscopic phenomenon, a different

property must be introduced. The polarizability is expressed as:

α =
p

Elocal

(2.22)

where p is the dipole moment and Elocal is the local electric field which produces

the dipole. The polarizability can be thought of as a reciprocal force constant, if

Equation 2.22 is rewritten as:

α =
e · x
F/e

= e2 x

F
= e2 1

β
(2.23)

where β is the force constant of Hooke’s law. As expressed in Equation 2.23, α has

dimensions of volume.

In the model employed in this work, polarization is taken into account in two

ways. In the first manner, ions are shifted slightly from their equilibrium positions

subject to the restoring forces from adjacent ions. This is called displacement po-

larization. The second process involves the displacement of electrons around a fixed

ion core or nucleus.
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It is important to include this electronic polarizability in the methodology, espe-

cially when considering large ions and charged defects. However, including electronic

polarizability increases the degrees of freedom and therefore the computational in-

tensity. As a consequence, in this work, only anions and larger cations (e.g. Zr and

Xe) are considered as polarizable in the second manner described.

To account for electronic polarizability, the shell model devised by Dick and

Overhauser is employed [109]. This model describes each ion as consisting of a core

of charge X · e and a corresponding shell of charge Y · e, such that the total charge

of the ion is (X + Y ) · e. The massless shell is coupled to the massive core by a

spring of force constant k (see Figure 2.6), such that the polarizability of the free

ion, αe, can be expressed as:

αe =
1

4πεo

(
Y 2

k

)

= 14.3994

(
Y 2

k

) (2.24)

where εo is the permittivity of free space and the numerical constant applies if Y

is in electron charge units and k is in units of ev·Å2. This expression is similar to

Equation 2.23, where α is in units of Å3.
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Figure 2.6: The shell model, where the orange atom is the core and the blue atom

represents the charge of the massless shell. The red arrows represent polarization,

black arrows represent Coulombic interactions and blue arrow represents short range

interaction.

It is common for the parameters Y and k to be fit to dielectric and elastic

constants. This fitting is primarily concerned with the high frequency dielectric

constant, ε∞, as it arises solely from the electronic polarizability, rather than having

ionic polarizability contributions, as does the static dielectric constant, εs.

Although the shell model is phenomenological in nature, its use is warranted by

its success in previous studies, (see for example Catlow et al. [110]). The strength of

this model (versus other models, such as the rigid ion model or the point polarizable

ion model) is that any force acting on an ion is assumed to do so via the shell,

thus coupling short range interactions to the polarizability, see Figure 2.6. Clearly,

this provides a framework by which it is possible to model more of the interactions

occurring between species than if the shell model was not used (i.e. the rigid ion

model alone).

There are however limitations to this model. First and foremost is that the shell
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model does not appropriately account for the Cauchy violation [111]. If the three

components of the stress tensor are given as X1, X2 and X3, and the three shear

components are given as X4, X5 and X6, then the Hooke stress - strain relation can

be expressed as:

Xi =
6∑

j=1

cijxj (2.25)

where cij are the thirty-six elastic constants. For cubic crystals, there are certain

equalities:

c11 = c22 = c33; c12 = c23 = c31; c44 = c55 = c66; (2.26)

The rest of the matrix is zero if the coordinate axes and the cube axes are parallel,

thus leaving only three independent components. Equivalent relations can be derived

for hexagonal crystals. Even more relations can be derived if the atoms of the crystal

interact with central forces (as they do in the shell model). These are the so called

Cauchy-Poisson relations, for which there exist expressions for cubic and hexagonal

structures. The cubic relation is as follows:

c12 = c44 (2.27)

(A more thorough derivation of the Cauchy-Poisson relations can be found in Chap-

ter II, Section 15 of Seitz’s Modern Theory of Solids [112]). Unfortunately, real

materials often violate Equation 2.27. For example, Table 2.1, where E is the prin-

cipal Young’s modulus, demonstrates that for common materials such as rocksalt

and KCl, the Cauchy relation is considerably violated [113].
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Material E c11 c12 c44

Fluor Spar 1470 1670 457 345

Rock-salt 418 477 132 129

Potassium Chloride 372 375 198 65.5

Table 2.1: Experimental values for elastic constants demonstrating the violation

of the Cauchy relation, reproduced from [113].

However, because the shell model is limited by perfect spherical symmetry, it

is unable to account for this violation. Certain modifications can be made to the

shell model so it is able to model the Cauchy violation. Schroder has introduced

a breathing shell, which allows the shell to distort spherically, thus adding another

degree of freedom [114]. However, this model only works for cases when c12 < c44.

When c12 > c44, Sangster has developed a modification which allows for ellipsoidal

modifications to the shell [115]. In this work, neither of these modifications have

been used, but they are acknowledged as potentially useful.

2.1.4 Energy Minimization

In order for the aforementioned model to be useful in predicting perfect lattice prop-

erties, it must be combined with an energy minimization technique in order to bring

the system to a state of mechanical equilibrium [116]. In this work, all ionic in-

teractions are calculated and each ion subsequently moves a distance proportional

to the force acting on the particle in the direction of the overall field. There are

two procedures to minimize the lattice energy: either at constant volume or con-

stant pressure. Constant volume minimization determines the minimum energy via

ionic coordinates, where only the strains on individual ions are considered. For
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constant pressure techniques, it is necessary to determine the minimum energy not

only through the adjustment of ionic coordinates, but also unit cell dimensions,

accounting for the strains both on individual ions as well as the unit cell.

Under constant volume conditions the lattice energy UL can be expanded to the

second order about a point r, and for the new set of coordinates r′ can be expressed

as:

UL(r′) = UL(r) + gT · δ +
1

2
(δT ·W · δ) (2.28)

In Equation 2.28, g is the first derivative of the lattice energy with respect to ionic

positions:

g =
∂UL

∂r
(2.29)

δ is the displacement (or strain) of a given ion:

δ = r′ − r (2.30)

and W is the second derivative of the lattice energy with respect to r:

W =
∂2UL

∂r2
(2.31)

At equilibrium, the change in energy with respect to strain is zero. Therefore:

∂UL(r′)

∂δ
= 0 = g + W · δ (2.32)

The optimum ion displacement to give rise to the minimum lattice energy is:

δ = −W−1 · g (2.33)

or:

δ = −H · g (2.34)
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where H is the Hessian matrix is the inverse of the second derivative of the lattice

energy with respect to ionic displacement.

The energy of the systems considered in this work are not harmonic, thus the

energy minimum can not be arrived at in a single step. Rather, subsequent displace-

ments, in general, result in lower energy configurations. Thus, the ionic coordinates

are adjusted iteratively until the forces on the atoms are zero. There are two meth-

ods of energy minimization employed in this work: Newton-Raphson and Conjugate

Gradient.

All Newton-Raphson type formulae (e.g. the Borgden, Fletcher, Goldfard, Shanno

formula [117]) serve to iteratively update the Hessian matrix, H, from Equation 2.34:

rn+1 = rn −Hi · gi (2.35)

This however requires the storage of the Hessian matrix of second derivatives, which

is computationally intensive. Furthermore, solving for the second derivative matrix

at each step would result in a less than expeditious overall calculation. For this rea-

son, Conjugate Gradient type minimizations are also employed. These only require

the calculations of the first derivatives of the lattice energy:

β =
gT

i−1 · gi−1

gT
i−2 · gi−2

(2.36)

Conjugate Gradient calculations are computationally less expensive than those of

the Newton-Raphson variety and converge quickly when far from the lattice energy

minimum. However, when near the minimum, the Conjugate Gradient technique

becomes less efficient due to the small gradients. Thus, a combination of these two

techniques is used during the minimization process, beginning with Conjugate Gra-

dient as a coarse refinement until a certain small gradient is met and then switching

to Newton-Raphson type methods in order to finalize the minimization.
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In depth mathematical discussions of energy minimization (including constant

pressure minimization) can be found elsewhere [118,119].

2.2 Defective Lattice

To paraphrase F.C. Frank, “materials are like people, it is their defects that make

them interesting.” Certainly the importance of defects controlling and modifying

materials is clear and is the central theme of this thesis. Therefore, the model

developed in the previous section to describe the perfect lattice will be expanded to

account for defective systems. In this work, the method accounting for the defective

lattice is based on a minimization of the total energy of a system by relaxing ions

around a defect. The effect is confined to a short distance from the defect, which

is facilitated by the use of a two region approach when calculating defect energies,

see Figure 2.7. The response of the ions in the inner Region I is evaluated explicitly

while the response of the ions in the outer Region II is treated as a continuum and

is therefore more approximate.
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Figure 2.7: The two region approach to calculating defect energies, where the

inner black sphere represents a defect, the orange sphere represents the boundary

of Region I, the grey sphere Region IIa, while Region IIb tends to infinity.

Region I is a sphere of ions including the defect. The total energy of these

ions is calculated explicitly as defined by the Coulombic interaction and short range

potential discussed previously. The size of Region I is a very important consideration

in these types of calculations. Therefore, Region I must be chosen large enough such

that the defect energy converges appropriately, but computational efficiency must

also be taken in to account. Figure 2.8 demonstrates the effect of Region I size on

the defect energy. The Region I sizes in this thesis have been chosen to err on the

side of defect energy convergence, and are found in Table 2.2.
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Figure 2.8: The effect of Region 1 size on defect energy, for the case of an (VO)··

in CeO2, reproduced from [105].

System Region I (Å) Region IIa (Å)

UO2 13.67 24.06

Pyrochlores ≈10.0 ≈30.0

Table 2.2: Region I and IIa radii.

Region II is subdivided into Region IIa and Region IIb. Region IIa serves as an

interface between Region I and Region IIb (which extends to infinity). The changes

in energy of the ions in Region IIa due to the defect and the relaxation of ions in
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Region I are calculated explicitly. However, the displacements of Region IIa ions are

determined in a single step by calculating the forces on these ions using the Mott-

Littleton approximation [120]. This approximation is applicable since the defect is

assumed to have only a small effect on the ions in Region IIb. Therefore, the entire

response of Region IIb is approximated by the Mott-Littleton method.

The complication the Mott-Littleton method addresses is that the forces on any

ion are not only due to the charged defect, but also to the dipoles which have been

induced in the region of the lattice around the defect. This polarization can be

approximately given by:

P =
q

4πr2

(
1− 1

ε

)
(2.37)

where P is the polarization, q is the charge of the defect, r is the distance from that

defect and ε = εsεo.

According to the conventional treatment of the defective lattice (as developed by

Lidiard and Norgett [121] and Norgett [122]), the total energy of the solid containing

a defect can be expressed as:

E = E1(x) + E2(x, ζ) + E3(ζ) (2.38)

where E1(x) is the energy of Region I, E2(x, ζ) is the energy of the interfacial Region

IIa and E3(ζ) is the energy of Region IIb. The two independent vectors (x) and (ζ)

are the coordinates of ions in Region I and Region II, respectively. As E3(ζ) involves

an infinite number of displacements, it can not be solved explicitly. However, if the

displacements are assumed to be quasi-harmonic, it can then be defined as:

E3(ζ) =
1

2
ζ ·A · ζ (2.39)

where A is the force constant matrix. This expression can substituted into Equation

2.38 and at the equilibrium condition:
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∂E

∂ζ
=

∂E2(x, ζ)

∂ζ

∣∣∣∣
ζ=ζ

+ A · ζ = 0 (2.40)

thus leading to an alternate expression for E3(ζ):

E3(ζ) =
1

2

∂E2(x, ζ)

∂ζ

∣∣∣∣
ζ=ζ

· ζ (2.41)

which also leads to an alternate expression for the total energy:

E = E1(x) + E2(x, ζ)− 1

2

∂E2(x, ζ)

∂ζ

∣∣∣∣
ζ=ζ

· ζ (2.42)

where ζ are the equilibrium coordinates of ζ. The total defect energy can then be

calculated by minimizing with respect to x and ζ.

2.3 Surface Energy Calculation

As mentioned in Chapter 1, a surface can be thought of as a large defect. There-

fore, many of the previously mentioned methods can be employed when modelling

surfaces. In the case of surface calculations, a unit cell is defined, cut in a specified

orientation and duplicated via periodic boundary conditions in 2D, see Figure 2.9.

In the third dimension the repeat block of material including the surface extending

approximately 30Å in the bulk constitutes Region I. Beneath that is an additional

30Å of material, Region II, in which the ions retain their perfect lattice position.

This Region II is not able to polarize in response to the surface, which, as will be

seen, places an important limitation on our calculations. The interactions between

ions are treated the same as when considering bulk defects, namely a long range

Coulomb interaction and a short range potential. Again, the Buckingham potential

has been employed when considering surfaces, as it has been for bulk materials.
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Figure 2.9: A surface simulation cell, where the z axis is normal to the surface.

A major difference in calculating surface energies and bulk defect energies is

how long range electrostatic interactions between ions are computed. In the case

of bulk defects, as mentioned in Section 2.1.1, the Coloumbic term of the total

energy, Equation 2.1, is determined via the 3D Ewald summation. When considering

surfaces, it is useful to consider this type of summation in 2D. A 2D treatment

converges less quickly than the 3D surface created through slabs and gaps but the

construction of 3D surfaces often results in an infinite array of dipoles which will not

converge. Unfortunately, the 2D Ewald sum has a different form than the 3D. For

a full description of the 2D sum, first published by Parry [123] (dutifully corrected

in [124]) and Heyes [125], the reader is directed elsewhere [126].
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2.4 Computational Codes

2.4.1 CASCADE

CASCADE (Cray Automatic System for the Calculation of Defect Energies) was

written in Fortran at the Daresbury Laboratory [127], specifically for the CRAY-1

computer. In this study, CASCADE is exclusively used for perfect lattice calcula-

tions and for defect energy calculations.

2.4.2 GULP

GULP (General Utility Lattice Program) is an improvement from earlier codes in

that it has an automated empirical fitting of potential parameters feature. This

feature subsequently allows for a simultaneous multi-structural fit routine.

2.4.3 MARVIN

MARVIN’S (Minimization And Relaxation of Vacancies and Interstitals for Neutral

Surfaces) Program was developed at the Royal Institution of Great Britain for study-

ing surfaces and interfaces [77]. MARVIN is based upon a similar code, MIDAS,

developed by Tasker in the late 1970’s [73]. MARVIN improves upon the MIDAS

code by utilizing the increase in computer capability to calculate the surface ener-

gies of not only simple cubic crystals, but also more complex carbonates, sulfates,

phosphates, etc. MARVIN also allows for the introduction of ions and molecules to

the surface, which is important in modelling crystal growth and catalysis.

MARVIN considers a simulation cell of a finite number of atoms, which are

repeated in 2D (as previously described). The cell consists of a Region I and II. In

this regard, MARVIN is similar to CASCADE, in that it relaxes Region I atoms

explicitly whereas those in Region II remain fixed. The total energy of the system is
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defined as the energy of all the Region I structural units, all the Region II structural

units and the periodic images of both regions. Since only two body terms are

considered, the total energy can be expressed as:

Etotal =

NI∑
a

[
1

2

∑
l 6=0

Vaa(|l|) +
1

2

NI∑
b6=a

∑
l

Vab(|rab + l|) +

NII∑
b

∑
l

Vab(|rab + l|)

]
(2.43)

where NI is the total number of particles in all Region I, NII is the total number of

all particles in Region II, l are the 2D lattice vectors and rab is the vector between

particle a and particle b. The first term inside the brackets describes the interactions

between a particle and its periodic images. The second term describes the interac-

tions between all Region I particles and their images. The third terms describes the

interaction between Region I and Region II.

Perfect lattice energies calculated with CASCADE can be used to determine total

energies, which are subsequently used in MARVIN because both codes use energy

minimization techniques and identical forces. Therefore, the energies calculated are

comparable.

The MARVIN code has been used in the past to predict atomistic interaction

between atomic force microscope tips and ionic surfaces [128] as well as to predict

the morphology of UO2 [45].

2.5 Listing of Short Range Potentials

Table 2.5 lists the short range Buckingham potentials used throughout this work.

Shell parameters are given in Table 2.5. In each of these tables, the origination

of the potential is referenced, though it should be noted that there is consistency

between them as they were all derived within the Atomistic Simulation Group of
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Imperial College and with respect to the same O2−-O2− potential.

Species A (eV) ρ (Å) C (eV·Å6) Reference

O2−-O2− 9547.96 0.2192 32.0 [129–134]

Lu3+-O2− 1618.80 0.33849 16.27 [133,135]

Yb3+-O2− 1649.80 0.3386 16.57 [105]

Er3+-O2− 1739.91 0.3389 17.55 [105]

Dy3+-O2− 1807.84 0.3393 18.77 [135]

Pr3+-O2− 2055.35 0.3438 23.95 [105]

Y3+-O2− 1766.40 0.33849 19.43 [134]

Gd3+-O2− 1885.75 0.3399 20.34 [105]

Eu3+-O2− 1925.71 0.3403 20.59 [105]

Sm3+-O2− 1944.44 0.3414 21.49 [105]

Nd3+-O2− 1995.20 0.3430 22.59 [105]

La3+-O2− 2088.89 0.3460 23.25 [105]

Ti4+-O2− 2131.04 0.3038 0.0 [136]

Ru4+-O2− 1215.78 0.3441 0.0 [105]

Mo4+-O2− 1223.97 0.3470 0.0 [105]

Sn4+-O2− 1414.32 0.3479 13.66 [105]

Pb4+-O2− 1640.34 0.3507 19.50 [105]

Zr4+-O2− 1502.11 0.3477 5.10 [105]

Ce4+-O2− 1809.68 0.3547 20.40 [137]

U4+-O2− 1761.78 0.3564 0.0 [138]

Ba2+-O2− 905.70 0.3976 0.0 [139]

Sr2+-O2− 682.17 0.3945 0.0 [138]

Kr0-O2− 800.38 0.3888 52.48 [154]

Xe0-O2− 598.00 0.4257 76.96 [154]

Kr0-U4+ 5912.78 0.3191 50.34 [36]

Xe0-U4+ 6139.16 0.3395 71.84 [36]

Table 2.3: Short-range pair potential parameters.
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Species Y (e) k (eVÅ−2) Reference

O2− -2.04 6.3 [129–134]

U4+ -0.10 160.0 [129]

Zr4+ -0.05 189.7 [105]

Pb4+ -0.05 205.0 [105]

Ce4+ -0.20 177.84 [105]

Kr0 -9.90 573.7 [36]

Xe0 -11.3 460.8 [36]

Table 2.4: Shell parameters.
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