
Chapter 1

Introduction

“The branch of physics we call ‘the physics of the solid state’ is, in large

measure, the study of defects in crystalline solids and the effects that they

have on the properties of these solids. In this it has to be contrasted with

the parallel science of crystallography, which studies the arrangements of the

atoms themselves.”

- N.F. Mott

The Page - Barber Lectures, 1956

The aim of this thesis is to describe work done investigating disorder in fluorite

based oxides. There exist many compounds whose crystal structure is either that of

fluorite or closely resembles this structure. This introduction begins with a descrip-

tion of the crystal structure of the compounds considered and then continues with a

discussion of disorder and disorder processes. Indeed, there are many ways in which

the order in crystalline solids can be disturbed, such as imperfections in position,

composition and electronic state [1]. Since this thesis will be concerned with mod-

elling the predictions of disorder, the introduction therefore provides a rudimentary

discussion of the means by which disorder is introduced into a lattice.
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1.1 Fluorite Based Oxides

1.1.1 MeO2 Oxides

The term “fluorite” originates with the mineral CaF2, which is generally known by

the same name. Oxides which adopt the fluorite structure or structures related to

fluorite have great and varied technological importance. Of those compounds con-

sidered in this thesis, applications range from nuclear fuel for UO2 to thermal barrier

coatings and solid oxide fuel cell components for pyrochlores. Despite the vast dif-

ference in applications, the crystal structures of fluorite and pyrochlore compounds

are very similar. This thesis then begins with a description of structure.

Pauling formulated a set of rules governing the stability of ionic crystal structures

[2, 3] (also see [4] for a particularly informative discussion of these rules). The first

of these states:

A coordinated polyhedron of anions is formed about each cation, the

cation - anion distance being determined by the radius sum and ligancy

of the cation by the radius ratio.

This is easier to visualize if ions are thought of as spheres, anions surrounding a

single cation. The preferential coordination of anions is dependent on the size of

the cation with respect the anionic radius. For example, the minimum radius for

a cation coordinated by an octahedron is easily calculated to be 0.414 times the

radius of the anion, see Figure 1.1. At this distance ratio, the anions just touch and

can therefore move no closer. If the cation is any smaller than this, the Coulomb

energy becomes defined by the anion-anion distance (assuming the cation remains

in the centre). However, by selecting a structure with a lower coordination number,

the minimum possible anion-cation distance is smaller and the Coulomb interaction

can be greater. Another way of visualizing this destabilization, is that once the
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cation is smaller than the minimum size for a given coordination it is no longer

“fully coordinated,” but has room with which to “rattle” about [5].

Figure 1.1: The calculation of the radius ratio for octahedral and cubic coordina-

tions.

The cation - anion radius ratio can therefore be used to determine the most

stable coordinated polyhedra. Table 1.1 lists the critical ratio values, where the

term “ligancy” has the same meaning as “coordination number” (i.e. the number of

atoms bonded to a central atom [2]). In this approach, when the ratio becomes less

than any of the critical values given in Table 1.1, the next lower structure becomes

preferred.

Polyhedron Ligancy Minimum radius ratio Example Compound

Cubo-octahedron 12 ≥1.000 none exist

Cube 8 ≥0.732 CaF2

Octahedron 6 ≥0.414 NaCl

Tetrahedron 4 ≥0.225 ZnS

Table 1.1: The minimum ionic radius ratios for coordinated polyhedra stability,

after [2].

Using ThO2 as an example of a compound crystallizing in the fluorite structure,

the ionic radius of 8 fold coordinate Th4+ = 1.05Å, while the 4 fold coordinate of
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O2− = 1.38 Å [6]. Thus, the minimum radius ratio = 0.761, which is considerably

above the minimum for a cubic coordination, but still well below the critical value

of 1.000 required to form the cubo-octahedron structure. Therefore, Th atoms will

be cubically coordinated by O atoms. Th atoms are FCC packed, thus forming a

tetrahedron about each O atom and the resulting space group is Fm3m [7, 8], see

Figure 1.2. Indeed, this description of the fluorite lattice pertains to many other

compounds, such as halides (SrF2), oxides (CeO2) and intermetallics (NiMgBi). In

this work, only oxides are discussed, predominantly UO2. After examining Figure

1.2, it is clear that there are many unoccupied interstices in the fluorite structure.

UO2 is the most common material used for nuclear fuel [9], in part because of its

ability to accommodate fission products in these voids, thereby reducing problematic

fuel swelling.

Figure 1.2: Unit cell of fluorite. The yellow atoms represent 4+ cations and the

red atoms represent 2- anions.

It should be noted that there are exceptions to Pauling’s first rule, as it is solely

based on simple geometry. Firstly, if the anions are smaller than the cations (as is the
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case for the anti-fluorite structures Li2O, Na2O and K2O), then the anion - cation

radius ratio must be used (as opposed to the cation - anion). Other exceptions,

including UO2, occur because this rule assumes ions to be rigid spheres, which

of course they are not. Partial covalency also contributes to further exceptions.

Although Pauling’s first rule is useful when making simple predictions, it is clear

that more rigorous techniques, such as atomistic simulation, are required in order

to generate more accurate predictions.

1.1.2 A2B2O7 Pyrochlore Oxides

Pyrochlore oxides are named after the mineral pyrochlore, (NaCa)(NbTa)O6F/(OH),

with which they share a similar structure [10]. A2B2O7 pyrochlores are ternary

metallic oxides whose crystal chemistry is complex enough to make them favourable

for a wide range of applications. In this thesis, A and B cations are only considered

as having charges of 3+ and 4+ respectively. However, there is another entire series

of pyrochlore compounds consisting of 2+ and 5+ cations.

Figure 1.3: Unit cell of pyrochlore. Blue spheres represent A3+ cations, yellow B4+

and red O2−.
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The general formula of the oxide pyrochlore structure can be written as A2B2O6O’.

There are four crystallographically unique atom positions and the space group is

Fd3m [10]. A common way of describing the structure is by fixing its origin on the

B site, with atoms located at the following positions (using Wyckoff notation): A

at 16d, B at 16c, O at 48f and O’ at 8b [10]. The only internal positional variable

of the pyrochlore structure is the oxygen x parameter, which characterizes the 48f

oxygen atoms. To better visualize the pyrochlore structure, the convenient, fluo-

rite type description is used [11, 12], see Figure 1.3. The pyrochlore structure can

thereby be considered as an ordered, defective fluorite solid solution. In CaF2, the

fluorine anions are located in the tetrahedral sites of a Ca face centered cubic ar-

ray. In this description of pyrochlore, the A and B cations form the face centered

cubic array, but are additionally ordered in the <110> directions such that the A

cations are eight coordinate and the B cations are six coordinate with respect to

oxygen. This cation ordering means that the tetrahedral anion sites are no longer

crystallographically identical. In fact, there are now three distinct tetrahedral sites:

the 48f, which has two A and two B nearest neighbours, the 8a, which has four B

nearest neighbours and the 8b, which has four A nearest neighbours. In pyrochlore,

the 8a positions are vacant. Figure 1.3 depicts one eighth of the pyrochlore unit cell,

which is analogous to a single fluorite unit cell. Figure 1.4 depicts a full unit cell

of a pyrochlore, with the anions removed in order to better view the two cationic

sublattices and the ordering along <110> directions.
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Figure 1.4: The cationic sublattice of pyrochlore.

1.2 Point Defects

All of the topics addressed in this thesis are concerned with deviations from the

perfect periodic lattice. Though there are many ways in which crystal imperfections

are manifest, such as dislocations, surfaces and pores, all of these are essentially

conglomerations of zero dimensional point defects. Point defects consist of vacant

lattice sites, atoms in non-regular lattice positions (so called “interstitials,” a term

first coined by Wagner [13]) as well as impurity atoms. Many properties (e.g. con-

ductivity, luminescence and diffusion) are influenced by the existence of these de-

fects, which is particularly true for inorganic solids. Furthermore, it is not possible

to produce a single crystal free of defects. Finally, as temperature increases, defects

become even more important.

In this section, the different types of point defect and their means of creation are

discussed. Kröger - Vink notation is used throughout [14].
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1.2.1 Intrinsic Disorder

Intrinsic disorder is so termed because it requires only thermal activation, rather

than the addition of impurities or solutes. As temperature is raised, contributions

to the free energy due to the entropy term (increasing the magnitude of lattice

vibrations and configurational terms) increase the number of atoms that are dis-

placed from regular lattice positions. However, the concentration of defects is able

to remain finite. This is because an increase in thermal energy also gives rise to an

increase in entropy, thus reducing the free energy, which is evident in the following

equation:

G = Go + n ·∆g − T ·∆Sc (1.1)

where ∆Sc is the configurational entropy due to the solution of defects, n·∆g is the

free energy change necessary to create n interstitials and Go is the free energy of a

perfect crystal. The two most common types of crystalline defects in ionic materials

are Frenkel [15] and Schottky defects [16, 17]. (It should be noted that thermo-

dynamic equilibrium is not always reached, and therefore real materials contain a

variety of defects due to slow kinetics of removal [18]).

Frenkel disorder results when an atom is displaced from its regular site to an

interstitial site, thus forming a defect pair (see Figure 1.5). For a binary metal oxide

MeO, the corresponding defect formation reaction is:

Mex
Me + V x

I � Me··I + V ′′
Me (1.2)
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Figure 1.5: The left figure is Frenkel disorder in an ionic crystal, where the red

square denotes a vacancy left by a cation which has moved to an interstitial site.

The right figure is Schottky disorder.

Several compounds readily exhibit Frenkel disorder. For example, UO2, CaF2

and CeO2, all demonstrate the Frenkel anion type of disorder (i.e. anion interstitials

and anion vacancies) while AgCl, AgBr and Fe3O4 all exhibit cation Frenkel disorder.

In this defect process, disorder, structural energy as well as entropy are increased.

It is important to understand the factors which determine the concentrations of

these types of defects. Recalling Equation 1.1, the configurational entropy can be

expressed as:

∆Sc = k · ln Ω (1.3)

where Ω is the number of ways in which to arrange the defects in the crystal and k

is Boltzmann’s constant, leaving only a value for Ω, which can be expressed as:

Ωv =
N !

(N − nv)! · nv!
(1.4)
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where Ωv is the number of ways to arrange vacancies, N is the number of regular

sites, and nv is the number of vacancies. Similarly for interstitials:

Ωi =
N !

(N − ni)! · ni!
(1.5)

These equations can then be inserted into Equation 1.3, leading to:

∆Sc = k · ln
{[

N !

(N − ni)! · ni!

]
·
[

N !

(N − nv)! · nv!

]}
(1.6)

Using the equality ni = nv (for ceramics, this is the electroneutrality equation):

∆Sc = k · { 2lnN !− 2ln [(N − n)! · n!]} (1.7)

If Stirling’s approximation for large numbers [19] is employed:

ln n! ≈ n ln n− n (1.8)

then the expression for ∆Sc can be rewritten as:

∆Sc = 2k · { N ln N − (N − n) · ln (N − n)− n · ln n} (1.9)

Equation 1.9 can be substituted into the equation for the free energy:

G = Go + n ·∆g − 2kT ·
{

N ln

[
N

N − n

]
+ n · ln ·

[
N − n

n

]}
(1.10)

At thermodynamic equilibrium, the free energy has a minimum with respect to n,

i.e.
(

∂G
∂n

)
T,P

= 0. The expression for
(

∂G
∂n

)
T,P

is obtained by differentiating Equation

1.10. If this is subject to the approximations for large N and small (i.e. dilute)

concentration of defects, N � n, such that N − n ≈ N , it is then possible to

obtain [5]:

n

N
= exp

(
− ∆g

2kT

)
= exp

(
∆s

2k

)
· exp

(
− ∆h

2kT

)
(1.11)
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It should also be noted that ∆s is the entropic term which results from lattice strains

and vibration frequencies altered by the presence of the defect. It is often the case

that this term is assumed to be zero, despite the fact that values between 10−4

to 104 have been reported [5]. It is clear then that absolute defect concentrations

are difficult to obtain with any degree of accuracy. Much more useful are the rela-

tive differences in defect concentrations (and indeed most defect related properties)

between compounds.

The other type of intrinsic disorder previously mentioned is that of Schottky

disorder [16, 17]. Schottky disorder is the simultaneous occurrence of cation and

anion vacancies in thermal equilibrium, see Figure 1.5. In this case, vacancy defects

must be formed in a number which maintains the electroneutrality of the lattice.

For example, MgO forms both one magnesium and one oxygen vacancy (a Schottky

pair) while TiO2 forms a titanium vacancy and two oxygen vacancies:

Mgx
Mg + Ox

O � V ′′
Mg + V ··

O + MgO (1.12)

and:

TixT i + Ox
O � V ′′′′

Ti + 2 V ··
O + TiO2 (1.13)

The thermodynamics are analogous to that of Frenkel disorder, see Equation 1.11,

and the concentration of defects increases exponentially with temperature (i.e. e−1/T ).

Another type of intrinsic disorder that may exist is that of ionic interchange

known as antisite disorder, where ions swap sites. This may seem unlikely, especially

in particularly strong ionic, binary crystals [20], but as will be seen later, in materials

with more than one cationic sublattice, swapping of cations is quite common indeed.

It is also usual for all of these disorder processes to be present simultaneously, though

one type of disorder typically predominates. In general terms, Frenkel disorder is

more likely when the anion and cation differ substantially in size and when the lattice
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polarization is pronounced, e.g. AgBr [20, 21]. When the anions and cations are of

similar size (as is the case for NaCl) Schottky disorder is favoured. Crystallography

also plays a critical role. In close packed materials, there is little lattice space to

accommodate an interstitial ion. It follows that Frenkel disorder is not favoured

in these materials. Conversely, in open structures, Frenkel disorder is more easily

accommodated.

1.2.2 Extrinsic Disorder

For the purpose of this thesis, intrinsic disorder is differentiated from extrinsic dis-

order as follows: intrinsic disorder only encompasses thermally activated defect pro-

cesses which occur within an otherwise perfect lattice where there is no reaction

with the environment. This is certainly a topic for debate, but inevitably it is only

a matter of semantics (as elucidated by Chiang et al. [5]). Therefore, according to

this definition, extrinsic disorder includes defects resulting from oxidation or reduc-

tion, i.e. non-stoichiometry. Essentially, extrinsic disorder includes reaction with

gaseous species from the environment that are constituents of the lattice in question

and reaction with species from the environment that are not native to the lattice. In

cases of large formation energies or low concentrations of intrinsic defects, extrinsic

behaviour can play the determinant role.

The concept of stoichiometry (i.e. the constant and fixed ratio of elemental

constituents of a chemical compound) dates back to Dalton’s atomic hypothesis [22],

and more so the Law of Definite Proportions, which was a product of this hypothesis.

This law states that the constituent elements of any compound exist in distinct

proportions. This law was the topic for heated debate between Proust, a proponent

of the law, and his fellow Frenchman Berthollet, who suggested that the composition

of solid compounds is by no means constant. Berthollet lost that debate (in as much
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as the theory of Definite Proportions became a law), but was vindicated many years

later in a paper by Kurnakov, where it was found that the constituents of various

intermetallics varied in composition [23]. Schottky and Wagner went on to suggest

that all inorganic solids are inherently non-stoichiometric [16].

The non-stoichiometry of metal oxides can be subdivided into two categories

with respect to exact stoichiometry: metal deficient or oxygen deficient. Non-

stoichiometry is a direct result of point defects and the extent of non-stoichiometry

is measured by the net concentration of these defects [21]. Just as the reactions

for Frenkel and Schottky disorder were electronically neutral, the reactions for non-

stoichiometry must also be kept neutral through the formation of complimentary

point defects. In metal deficient oxides, if metal vacancies are formed, they are

complimented by electronic defects on either remaining metal sites (increasing the

valence state), on the oxygen site (lowering the charge) or by a delocalized charge.

If the metal sublattice remains intact, the non-stoichiometry is facilitated by oxygen

interstitial defects compensated by the electronic defects mentioned above. It fol-

lows that for the oxygen deficient analogue, metal interstitials or oxygen vacancies

will be the predominant structural defects.

A perhaps more clear example of extrinsic disorder, but still technologically

significant, is the presence of impurity defects which are non-native to the compound.

For example, doping a material (thus generating defects) can have pronounced effects

on a variety of properties: doping Si with group V atoms Sb, As, P or group III atoms

In, Al or B creates charge carriers for n- and p- type semiconductors respectively [24].

In addition, the solution of CaCl2 lowers the density of KCl with the production

of K vacancies [25]. Finally, the cubic fluorite structure of ZrO2 can be stabilized

with a variety of oxides such as Y2O3 or CaO. The latter example is particularly

important in electrochemical applications due to the generation of anion vacancies.
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For example:

CaO(g) + (ZrZr)
x + (OO)x � (CaZr)

′′ + (VO)·· + ZrO2 (1.14)

1.2.3 Fission Produced Defects

The impurity defects considered in this thesis are generated by the fission process

(a term borrowed by Otto Frisch [26, 27] after learning from a biologist colleague,

William Arnold, of the word for cell division [28]) and not through doping. Al-

though the discovery of nuclear fission is relatively recent, because of its complexity

and implications, much research has been done to further the understanding of this

phenomenon. By 1936, Fermi and others [29–31] were able to show that slow neu-

trons were able to disintegrate nuclei. However, it was the strange manner in which

uranium disintegrated which made it so exciting. Uranium is naturally radioactive

and disintegrates via the emission of alpha particles. The fact that slow neutron

irradiation was leading to beta ray emission meant that a different process was tak-

ing place. In 1939, Hahn and Strassman [32] found at least three radioactive bodies

when bombarding uranium with neutrons, one of which was barium. Initially it had

been believed that radium was being produced. This misconception was on account

of the limitations of atomic theory at the time. After many thorough chemical ex-

periments it became clear that the substance Hahn and Strassman obtained was

barium, and thereby it was deduced that the uranium nucleus, after capturing a

neutron is able to split into two nuclei (Niels Bohr stated after this discovery, “Oh,

what fools we have been. We should have seen that before!” [28]). Although a de-

tailed account of the fission process mechanism is not justifiable (and can be found

elsewhere: see Fission, Chapter 10, by J.A. Wheeler and I.G. Schröder in [33]), a

few points are relevant. The following reaction describes a typical example of the

fission of U235 [34]:

29



Introduction

on
1 +92 U235 →92 U236∗ →57 La139 +42 Mo95 + 20n

1 (1.15)

The total energy released by a fission event can be expressed as [35]:

∆E = (Mo − ΣMi)c
2 (1.16)

where Mo is the mass of the original nucleus (U235 in the example case) and Mi is

the mass of the resulting nuclei (2 ·Mneutron + La138.955 + Mo94.945). An energy of

200 MeV results from the mass change of 0.215 amu.

Figure 1.6: Fission product yield for a PWR fuel rod after 2.9% burnup, reproduced

from [36] and after 1% burnup after data given in [37].

The fragments of the fission process quickly emit neutrons after the fission event

because they are proton deficient. The fission products are left as a charge defi-

cient pair and continue toward a stable state through β decay or via excited states.

Though rare, uranium is also known to split into three and four fission products.

The left hand plot in Figure 1.6 displays the number of each fission product resulting

from the fission of 100 uranium atoms, while the right hand plot is the concentration

of fission products in weight-ppm for a fuel pin with a different history. Although

both sets of data originate from U-235 fuel, differing only in burnup percentage,
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there are some slight differences. However, in both plots, there is a very pronounced

double peak for the statistical distribution of fission products. This double peak is

strongly dependent on what has induced the fission event. The slower the neutrons,

the more pronounced the peaks. Higher energy neutrons give rise to a more sym-

metrical curve. Another important fact that can be observed in Figure 1.6 is that

there are a significant number of decay atoms present, each of which will behave in

a different chemical and physical manner.

1.2.4 Association of Point Defects

As previously mentioned, it is possible, and in fact likely that different types of

defects will exist. However, a model based upon the assumption that point defects

form an ideal solution is too simple. An important behaviour to consider is the

interaction between defects, especially those exhibiting Coulombic attraction due to

their opposite charges. The interaction between defects is, among other things, a

function of their concentration. At low concentrations, ideal solution defect models

are useful, but as the concentration of defects increases, activity coefficients must

be introduced. The first attempt to correct activity dependent defect interactions

was the Debye - Hückel theory [38, 39], which was initially developed for aqueous,

electrolytic solutions. The basis of this theory is that all deviations from ideal

behaviour can be accounted for by electrostatic interaction between charged species.

If one ion is considered, it can be thought of as attracting a cloud of oppositely

charged ions, which screen it from all other defects, thereby decreasing the chemical

potential. Chemical potential in this case can be expressed as an activity coefficient.

The end result of the Debye - Hückel treatment is that the activity coefficient for any

defect is less than its concentration. The mean activity coefficient, f±, is expressed

as:
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f± = exp

{
− e2

o

8π · εo · ε · kT
· b

1 + b · a
· |z+ · z−|

}
(1.17)

where eo is the charge of an electron, ε is the relative dielectric constant (permit-

tivity), εo is the absolute dielectric constant, k is Boltzmann’s constant, a is the

smallest distance after which associates will not form and z+, z− are the charges of

the point defects considered. The distance, 1
b
, is known as the Debye length and can

be expressed as:

b =

√
e2

o

εo · ε · kT
·
∑

i

ni · z2
i (1.18)

where ni is the number of defect species per cm3. From this equation, it is clear

that the Debye length (the screening length) increases with a decrease in the defect

concentration or an increase in the dielectric constant. Unfortunately, the Debye-

Hückel correction is not necessarily realistic physically when applied to defective

solids (after all, it was developed for liquids). Firstly, ε is a function of temperature

and is generally unknown. What’s more, the dielectric constant is a bulk value which

is meaningless when applied to atomic distances. Thus, the Debye-Hückel theory is

only valid at low defect concentrations.

The work described in this thesis is concerned with fluorite compounds which

display very high defect concentrations such that close defect association is practi-

cally imposed. As such, a Debye-Hückel correction is not appropriate.1 Rather, it

is sufficient to simply consider defect associations explicitly at an atomic level (and

therefore defect clustering). This relates our results to low temperatures but high

defect concentrations; conditions which are generally satisfied by the compounds

investigated in this study.

1More complex models have been developed to account for defect interactions (e.g. [40,41]), but

these are not practical for this study.

32



Introduction

1.3 Surfaces

A useful way of considering a surface, at least from the perspective of the ions

directly beneath the surface, is as a giant defect [42] and the positions of these

ions are relaxed as if they were responding to a point defect. The ultimate effect

of this relaxation can be significant. In fact, many properties and phenomena of

ionic crystals are governed by surfaces, such as mechanical strength, catalysis and

crystal morphology. A convenient way of envisioning a surface is as a cleaved crystal

consisting of stacked planes. According to Tasker [43], there are then three types of

surface, as shown in Figure 1.7.

Figure 1.7: The types of ionic surface according to Tasker [43]. The horizontal

arrows indicate planes along which the crystal can be cut without forming a dipole.

A Type 1 surface is a series of neutral planes, each plane consisting of a stoi-

chiometric ratio of anions and cations. A Type 2 surface consists of charged planes,

but arranged symmetrically such that there is no dipole moment perpendicular to

the surface, so long as the surface is cut between neutral blocks. A Type 3 surface

is a series of alternately charged planes, but however the crystal is oriented, it is
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not possible to form a surface free of a dipole moment. Chapter 4 is concerned with

results for the segregation of fission products to low index surfaces of UO2 and will

discuss the structure of each of these surface types that form in fluorite in detail.

As will be shown, each of these Tasker surface types is represented by the three low

index surfaces of UO2.

The stability of a surface is controlled by its surface energy which is defined

as: [42]

γ =
(Ecrystal with surface)− (Ebulk)

(surface area)
(1.19)

Surface energies are capable of being calculated (the details of which will be dis-

cussed in Section 2.3) providing information on surface stability [44] and thus for

equilibrium crystal morphology [45–48]. It has been shown that if there exists a

dipole perpendicular to the surface, the surface energy is infinite and such surfaces

do not occur [49]. Recalling that Type 3 surfaces have such a dipole moment, it

follows that they will not form unless the dipole is neutralized by defects. Typically,

a number of ions must be removed from the surface and placed on the bottom of

the crystal. This generates a dipole across the crystal that is in opposition to the

surface dipole.

1.4 Transport

1.4.1 Diffusion Equations

Transport in ceramics, both mass and electrical, is an important and complicated

phenomenon. For example, mass transport governs the densification process during

sintering while electrical transport is necessary for fuel cells. Diffusion is the trans-

port of matter, in the form of atoms, ions or molecules and is responsible for most
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structural changes. The common way of describing diffusion is through Fick’s first

law [50]:

J = −D

(
dC

dx

)
(1.20)

where J is the flux of a species in moles per unit area time unit (e.g. mol/(cm2·

sec)), D is the diffusion coefficient and dC/dx is a concentration gradient. D is a

useful property of materials, since it describes the rate of diffusion of a species, or its

diffusivity and usually appears in units of cm2/sec. Fick’s first law is analogous to

both Ohm’s law for electrical conduction and Fourier’s law of heat conduction [51]

(though it should be pointed out that these are not actually “laws,” but rather

mathematical descriptions of phenomena). Fick’s first law is applicable in steady

state situations, when J is independent of time. However, if the concentration, C,

varies with time (i.e. non-steady state), then Fick’s first law becomes more difficult

to use. The increase in concentration with time must equal the negative flux:

∂C

∂t
= −∂J

∂x
(1.21)

and then substituting Fick’s first law, to obtain:

∂C

∂t
= −D

∂2C

∂x2
(1.22)

which is commonly known as Fick’s second law. Solutions to Fick’s second law be-

come very complicated, often involving error functions, infinite trigonometric series

as well as Bessel functions (common in cylindrical geometries). In depth discussions

of Fick’s second law and its solutions can be found elsewhere [52,53].

1.4.2 Atomistic Theory of Diffusion

This account of diffusion has thus far been strictly phenomenological, and has not

yet addressed the atomistic theory of diffusion. Diffusion on the microscopic scale
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was first documented by Robert Brown after having observed the seemingly random

movement of pollen particles immersed in water [54]:

These motions were such as to satisfy me, after frequently repeated ob-

servation, that they arose neither from currents in the fluid, nor from its

gradual evaporation, but belonged to the particle itself.

Initially, Brown thought this “movement” to be a characteristic of only organic sub-

stances, referring to them as “elementary active particles,” but eventually included

inorganic material as well after further experimentation (even having tested powder

obtained from a fragment of the Sphinx). Such was the lack of understanding, that

Brown cautiously warned:

The dust or soot deposited on all bodies in such quantity, especially in

London, is entirely composed of these molecules.

Despite continuous research on so called Brownian motion, it was not until the

early 20th century that Smoluchowski [55] and Einstein [56, 57] provided a precise

explanation. This problem, commonly referred to as “random-walk,” attempts to

determine the final position of particles by using jump frequencies and average jump

distances. If a block of material is considered as having a concentration gradient

along its x axis (see Figure 1.8), an equation can be derived which relates D to the

jump frequency and jump distance.
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Figure 1.8: A bar with a concentration gradient in the x direction, after [58].

Assume two planes, E and E ′, are separated by a distance r. If there are n1 atoms

diffusing per unit area in plane E and n2 atoms diffusing per unit area in plane E ′,

and if the average jump frequency is Γ, it follows that the net flux is:

J =
1

6
(n1 − n2)Γ =

(number of atoms)

(area)(time)
(1.23)

Concentrations c1 and c2 can be written as:

n1

r
= c1 and

n2

r
= c2 (1.24)

This can then be substituted into Equation 1.23:

J =
1

6
(c1 − c2)r · Γ (1.25)

Generally, concentration changes are slow enough that they can be expressed as [52]:

c1 − c2 = −r

(
∂c

∂x

)
(1.26)

Which is essentially Fick’s first law, if the diffusion constant is expressed as:

D =
1

6
Γ · r2 (1.27)

Equation 1.27 is the definition of the diffusion coefficient in solid state systems. It

consists of a geometric factor (= 1
6

in this case because of the six directions in space
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which an atom can jump), an elementary jump distance squared (= r2 which is

proportional to the lattice parameter) and an effective jump frequency (= Γ).2 (A

more detailed discussion of random walk and the diffusion coefficient becomes rather

complicated and is not warranted by this thesis and can be found elsewhere [52,61].)

There are several possible mechanisms for the diffusion of ions and atoms, those

of which are predominant in the crystalline solids are now described. The interstitial

mechanism is the diffusion of an atom via interstices, see Figure 1.9.

Figure 1.9: The interstitial and vacancy diffusion mechanisms.

An obvious prerequisite of this type of diffusion is that there are defects residing

in interstitial positions. This mechanism is most likely to occur with small solutes,

as there is a local deformation of the lattice. In Figure 1.9, where atoms labelled

1 and 2 must move in order for the interstitial atom to move into its new position.

Another type of diffusion mechanism is known as the vacancy mechanism. In this

case, adjacent atoms are able to jump into these unoccupied sites (denoted by the

square in Figure 1.9). There is much less distortion to the lattice when atoms diffuse

via this mechanism compared to diffusion via the interstitial mechanism.

2An interesting aside is that Perrin used Einstein’s kinetic theory of random walk to determine

Avogadro’s number [59,60].
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Due to the severe lattice distortions required, larger atoms occupying interstitial

sites are unable to diffuse via an interstitial mechanism. However, an alternative

is afforded by the interstitialcy mechanism, in which an interstitial atom forces an

adjacent atom on a regular lattice site into an interstitial site, see Figure 1.10.

Figure 1.10: The interstitialcy and crowdion diffusion mechanisms.

This type of diffusion can be collinear (if the displaced atom moves in the direction

of the red arrow in Figure 1.10) or non-collinear (if it moves in other directions than

the red arrow). A related diffusion mechanism occurs when an interstitial occurs in a

close packed direction, and is known as the crowdion mechanism. The extra atom in

the row displaces several atoms from their regular sites, see Figure 1.10. Although

this mechanism is not likely for ionic materials because of the strong Coulombic

forces involved, it may be important after irradiation, especially in metals.

It has already been stated that it is not unlikely for several types of defects to

be present simultaneously. Each of the diffusion mechanisms discussed is dependent

on point defects. Therefore, several types of diffusion mechanism can co-exist, with

one generally predominating. It follows that diffusion is directly related to the

concentration of defects and their mobility.
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1.4.3 Segregation

The segregation of fission products to surfaces of UO2 is discussed in Chapter 4,

where segregation is the movement of a species toward (or away from) a surface,

boundary or interface. Theoretical explanations for surface segregation date back

to Gibbs [62], and his description of a dividing surface between two bulk phases.

Despite the fairly long time of qualitative understanding, it is only recently that

analytical instruments have been developed to feasibly investigate this phenomenon

(e.g. Auger electron spectroscopy [63]). Nevertheless, segregation trends are difficult

to extract from experimental data. This can be attributed to the complexity of

segregation. Factors such as ionic space charge, the compensation of surface charge

beneath the surface, and surface strain effects further complicate the segregation

phenomenon. Chapter 4 discusses yet more complications encountered during this

work.
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