
Chapter 2

Methodology

2.1 Introduction

Over the past twenty years, one of the major developments in the physical and biolog-

ical sciences is the use of computer modelling. For example, impressive achievements

have been made in molecular biology [6,7], protein science [8], polymer science [9,10],

physical chemistry [11], liquid crystals [12, 13] and solid-state materials [14, 15].

Previously, computer modelling has been concerned with reproducing experimental

data; in essence it has been trying to prove itself. However, it is increasingly becom-

ing a predictive tool, and is moving towards more realistic and accurate predictions

of complex systems [16]. Much of this advancement is a consequence of the rapid

increase in computational resources available, which is illustrated by the continued

increase in the number density of transistors incorporated on an integrated circuit,

still in accordance Moore’s Law [17].

The modelling methodologies, which are used within the field of solid-state physics,
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fall into two categories, those that rely upon the use of a simple description of

interatomic forces, and those that take a quantum mechanical approach by solving

Schrödinger’s equation [14]. Interatomic potentials are numerical functions that

attempt to describe the variation in energy of an atomic or ionic interaction as a

function of separation. Such potentials can be used to perform either static [14,18]

or dynamic calculations.

This thesis utilises static-lattice calculations, and these are described in more depth

later. Molecular dynamics (MD) calculations are methods that allow the crystal

lattice to vibrate, where this vibration is described by Newtonian laws [14]. One

popular method for quantum molecular dynamic (QMD) calculations is based on the

Car-Parrinello approximation [19] and use Density Functional Theory (see Section

2.7) to calculate the energy of the system, and thus, the interatomic forces. Monte

Carlo (MC) methods have their basis in statistical physics and make changes to the

system by randomly swapping components and then deciding whether to accept or

reject the change via a set of rules. MC can be used in conjunction with energy

minimization to evolve structures by swapping ions within a lattice in a random

fashion and decision criterion is the evaluation of the energy via energy minimization,

this is then compared to the previous result [20].

Molecular dynamics calculations are more computationally intensive than the static-

lattice approach. They are limited by the very short time-scales they can predict

(typically nanoseconds). The timestep between calculations must be on a scale

smaller than the characteristic time of any important process in the system (e.g.

an atomic vibration), hence a value of the order of 10−15 s is typically used [14]. A

technique recently proposed by Voter [21] may help to resolve this timescale problem

by running the simulation at elevated temperatures in order to accelerate the system
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dynamics. The electronic structure calculations that attempt to solve Schrödinger’s

equation are even more computationally expensive. They are however, considered

less reliant on empirical approximations and so may yield more accurate results. One

important role of highly accurate quantum mechanical calculation is in determining

reliable parameters for interatomic potentials [16].

The calculations presented in this study employ predominantly the static-lattice,

energy minimization approach whilst some use a quantum mechanical approach.

The minimum energy configuration is determined by an iterative relaxation of the

atom positions with respect to the forces acting on them.

Static-lattice simulations are very versatile and have been extended to a wide range

of applications and provide a good working description of many important properties

of ionic crystals [18, 22–28]. Nevertheless they do have limitations in their scope,

for example, they are unable to model any property that depends explicitly on

electronic structure. They can, however, model charged defects, from which an

electronic defect can be inferred [14], for example, a lattice ion can be ionized (a

hole) or can assume an extra charge (a small polaron or localized electron).

2.2 Crystal Data

Initial crystallographic data were obtained by a search of research literature using

the Inorganic Crystal Structure Data file (ICSD), which is part of the Chemical

Data Service at Daresbury [29]. These data are presented in Tables 3.6, 3.7, and

3.8.

Effective ionic radii were taken from Shannon [30]. The 12 co-ordinate effective radii
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were not available for all ions, thus for these the radii were calculated by fitting a

function to the changes in ionic radius as the co-ordination increased from 6 to 8

and then applying this to the increase from 8 to 12. Predictions were then validated

against known 12 coordinate radii. The ionic radii used for this work are given in

Tables 2.1 and 2.2 and the relationship between 8 and 12 coordinated ionic radii is

shown in Figure 2.1 where it can be seen that there is good correlation between the

predicted and experimental ionic radii.

Figure 2.1: Comparison of predicted and ionic radii with those of Shannon.
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Table 2.1: 12 co-ordinate effective cation radii.

Cation Effective ionic radius Å

Sc3+ 1.0503

In3+ 1.1044

Lu3+ 1.1509

Yb3+ 1.1578

Er3+ 1.175

Ho3+ 1.1857

Y3+ 1.1897

Dy3+ 1.198

Tb3+ 1.2122

Gd3+ 1.227

Eu3+ 1.2424

Sm3+ 1.24∗
Nd3+ 1.27∗
Pr3+ 1.3147

Ce3+ 1.34∗
La3+ 1.36∗
∗ Ionic Radii from Shannon [30].

Table 2.2: 6 co-ordinate effective cation radii [30].

Cation Effective ionic radius Å

Al3+ 0.535

Cr3+ 0.615

Ga3+ 0.62

Fe3+ 0.645

Sc3+ 0.745

In3+ 0.8
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2.3 The Perfect Lattice

Static lattice calculations are based on the classical Born model [31, 32] of ionic

solids in which the lattice is constructed from an arrangement of spherical, charged

ions. A pair-potential description of the forces between ions is used [18], in which

the interaction energy between the ions is a function of their separation (and hence

atomic position). These forces can be resolved into two components (Figure 2.2):

(i) long-range Coulombic interactions and (ii) short-range interactions.

Figure 2.2: The long and short range interactions of the total forces (adapted from

Harding [33]).

Since there are many atoms interacting with each other within the lattice, the total

interaction can be expressed as a series summation, with increasing numbers of ions

such that:
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Φ = Φ0 +
∑
ij

Φ2(rij) +
∑
ijk

Φ3(rijk) +
∑
ijkl

Φ4(rijkl) + . . . (2.1)

In this sum, Φ0 is a function of the local environment, and is traditionally ignored

since it is differences in energies that are usually of importance, i.e. it defines

the energy zero. Φ2(rij) is the interaction acting over ion pairs, Φ3(rijk) is the

interaction acting over ion triplets etc. For ionic materials, the pair interactions

are usually assumed to be dominant and all higher interactions are considered to be

negligible [33]. Consequently we only include the two body Φ2(rij) terms and choose

to ignore three body Φ3(rijk) and higher terms explicitly. This is the pair potential

approximation [33]. The total energy (ET ) for the interaction between two ions (i

and j) takes the form [34]:

ET =
qiqj

4πε0rij

+ φsr (2.2)

where the first term represents the long range Coulombic interaction; qi, qj are the

charge on ions i and j; rij is the ionic separation; and ε0 is the permittivity of free

space. The second term, φsr, is the short-range interaction energy (described in

Section 2.3.2). All interactions in a lattice can be summed to give the total lattice

energy (EL):

EL =
∑
j>i

∑
i

(
qiqj

4πε0rij

+ φsr

)
(2.3)
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2.3.1 The Long Range Interaction: The Ewald Summation

A significant computational problem exists in the summation of the long range

Coulombic forces. The issue is that these forces typically fall off as r−d, where

d is the system dimensionality [35, 36]. It therefore proves very difficult to sum

the forces to determine the true interaction energy of the system. Consequently, a

new mathematical approach was needed to facilitate the summation: the first such

method was provided by crystallographer Paul Ewald in 1921 [37].

The Ewald summation technique was derived to calculate the electrostatic inter-

action between one ion and all remaining ions in the crystal lattice. The formal

mathematical derivation is rather complex and a detailed explanation is beyond the

scope of this thesis. Therefore, the following section describes the important as-

pects of the summation method; a similar abridged derivation can be found in early

editions of Kittel’s book, Introduction to Solid State Physics [38], and is attibuted

to an unpublished paper by Ewald and Shockley. Later editions of Kittel’s book

(e.g. [39]) introduce a structure factor into the derivation for the case where the

unit cell contains more that one ion. A third good derivation is given by Tosi [40].

In deriving the Ewald sum, an assumption is made that the lattice is constructed

of spherical ions with charges of the same magnitude (whether positive or negative)

and that they do not overlap. With this in mind, the total potential, ψ, experienced

at a specific reference lattice point, ~r, can be partitioned into two distinct, but

related components, one in reciprocal space, ψ1 (Figure 2.3), and one in real space,

ψ2 (Figure 2.4).

ψ = ψ1 + ψ2 (2.4)
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The potential ψ1 is that of a lattice with a Gaussian distribution of charges fixed

at each lattice point with the same signs as the ions occupying those lattice points

in the real crystal. The potential ψ2 is that of a lattice of point charges, with the

addition of a Gaussian distribution of opposite sign superimposed upon the point

charges. The reason for the splitting of the potential into two components, is that

by choosing a suitable parameter, η, for the width of the Gaussian peaks, both parts

can be made to converge rapidly at the same time. A highly optimal value for this

width parameter has been determined by Catlow and Norgett [41] and is given by:

η =

(
Nπ3

V 2
c

) 1
6

(2.5)

where N is the total number of species and Vc is the unit cell volume. When

the two component potentials are summed, the overall potential reduces to the

original set of point charges, i.e. Gaussian distributions cancel, and the overall

potential is independent of parameters, such as the width parameter, used during

the convergence of the components ψ1 and ψ2.

The definition of the Madelung constant mandates that the charge distribution on

the reference point is not considered to contribute to the potentials ψ1 or ψ2, i.e.

ions cannot experience their own electrostatic potential as illustrated in Figure 2.3.

It follows that the potential ψ1 can be described as the difference between two

potentials, ψa, being the potential of a continuous series of Gaussian distributions

and ψb, being the potential of the single Gaussian distribution of the reference point.

ψ1 = ψa − ψb (2.6)
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(a) ψa (b) ψb (c) ψ1 = ψa − ψb

Figure 2.3: The development of the potential as a consequence of the definition

of the Madelung constant, from a lattice of Gaussian distributions and a Gaussian

charge distribution at the reference point.

Figure 2.4: Graphical representation of ψ2 of the Ewald summation.

In order to calculate the potential of the continuous Gaussian distribution, ψa, it

and its associated charge density, ρ, are expanded in terms of a Fourier series:

ψa =
∑

k

ck exp(i(~k · ~r)) (2.7)
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ρ =
∑

k

ρk exp(i(~k · ~r)) (2.8)

where ck and ρk are coefficients and ~k is 2π times the reciprocal lattice vectors. The

series converges with increasing ~k and decreasing ck and ρk. The charge density is

related to the electrostatic potential via the Poisson equation [35]:

∇2ψa = −4πρ (2.9)

so that

ρk =
ckk

2

4π
(2.10)

The Gaussian charge density for a single ion of charge qi with half width
√

ln2
η

is:

ρ = qi

(η
π

) 3
2
exp(−η~r2) (2.11)

It is possible to evaluate the charge density, ρk, by multiplying both sides of Equa-

tions (2.8) and (2.11) by e−i~k·~r, and integrating (2.8) over the unit cell volume, Vc,

and (2.11) over the whole crystal. These two integrations should result in identical

charge densities, so that:

∫
V∞

qi

(η
π

) 3
2
exp(−η~r2) exp(−i~k · ~r)dr = ρk

∫
Vc

exp(i~k · ~r) exp(−i~k · ~r)d~r = Vcρk

(2.12)
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Integrating over the unit cell results in a charge distribution that originates from

both the lattice point within the cell, and the tails of the distributions from all other

lattice points.

It is then possible by considering Equations (2.7) and (2.10) and combining with

the above result to derive,

ψa =
∑

k

4π

k2Vc

∫ (η
π

) 3
2
exp(i~k · ~r) exp(−ηr2) exp(−i~k · ~r)d~r (2.13)

which can be integrated to yield

ψa =
4π

Vc

∑
k

exp(i~k · ~r − k2

4η
)

k2
(2.14)

When ~k = 0, the potential ψa tends to infinity. However, since it is assumed that

the overall charge of a neutral unit cell is zero, this term can be ignored.

The potential at the reference point in the lattice, (i.e. at ~r = 0) is ψb; the contri-

bution of this to the field is due to the central Gaussian distribution:

ψb =

∫ ∞

0

1

ε0
r2ρ

~r
d~r =

1

2ε0
qi
η

1
2

π
3
2

(2.15)

Therefore, combining Equations (2.14) and (2.15) it is possible to obtain an expres-

sion for ψ1:

ψ1 =
4π

Vc

∑
k

exp(i~k · ~r − k2

4η
)

k2
− 1

2ε0
qi
η

1
2

π
3
2

(2.16)
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The remaining contribution to the net potential, ψ2, must now be evaluated at the

reference point, this is non zero since it has a contribution due to the tails of the

Gaussian distributions from the other lattice points overlapping the reference point.

The potential has three contributions from each lattice point: the point charge

associated with the ion j, the Gaussian distribution contained within the sphere of

radius rij at the j lattice point and the Gaussian distribution occurring outside the

same sphere.

ψ2 =
1

4πε0

∑
j

qj

[
1

rj

− 1

rj

∫ rj

0

ρd~r −
∫ ∞

rj

ρ

~r
d~r

]
=

1

4πε0

∑
j

qj
rj

erfc(η
1
2 rj) (2.17)

Now, with expressions for ψ1 and ψ2 determined, it is possible to expand Equation

(2.4) by combining Equations (2.16) and (2.17):

ψ =
4π

Vc

∑
k

exp(i~k · ~r − k2

4η
)

k2
− 1

2ε0
qi
η

1
2

π
3
2

+
1

4πε0

∑
j

qj
rj

erfc(η
1
2 rj) (2.18)

2.3.2 The Short Range Interaction

The short-range interaction energy has both repulsive and attractive components.

The repulsive interactions occur due to an increase in nuclear repulsion through

electron cloud overlap between the ions as they approach; this only acts over small

separations. The attractive force operates over intermediate distances and results

from the formation of instantaneous dipoles between the ions (one type of the van

der Waals interaction). The magnitude of the attractive force is determined by the

charges on the ions.
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In theory, there should not be a problem in defining a potential since, as an energy

surface exists, an algorithm that describes it will constitute the potential. Many dif-

ferent models exit, and are useful for different approaches, for instance the Lennard-

Jones potential is very popular for molecular dynamics simulations. Early attempts

at determining empirical potentials were overly simplistic such as that determined

by Kapustinskii [42, 43] and required no information about the crystal structure in

order to yield the lattice energy (see Equation 2.19).

∆U = −1.07× 105v | qi || qj |
rij

(2.19)

where U is the system lattice energy, v is the number of ions in the molecule, qi, qj

are the ionic charges and rij is the ion separation.

The first attempt to describe a true interionic potential was by Born and Landé [44]

who described the functional form:

φsr(rij) =
b

rn
ij

(2.20)

where b and n are constants that are chosen to reproduce the equilibrium interionic

separation and rij is the nearest distance between two unlike ions. This form, though

very simple, works well for very highly ionic materials such as the alkali halides. To

account for the new information from quantum mechanics, Born and Mayer [32]

introduced a short range repulsive function of the form:

φsr(rij) = Aij exp(
−rij

ρij

) (2.21)
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where Aij and ρij are adjustable parameters. An attractive term of the form C6,ij/r
6
ij,

was also then added to Equation 2.20 to account for the van der Waals interaction

which had just been determined via work from van der Waals, London and Margenau

[45–48]. This combination results in the aforementioned Lennard-Jones potential

[49–51]:

φsr(rij) =
b

rn
ij

− C6,ij

r6
ij

(2.22)

When the short range repulsive and the attractive van der Waals terms are combined,

the Buckingham potential model is formed:

φsr(rij) = Aij exp

(
−rij

ρij

)
− C6,ij

r6
ij

(2.23)

where the Aij parameter can be approximated as a measure of the number of elec-

trons within the ion; ρij can be approximated as a measure of the electron density;

and C6,ij is an approximate description of the polarisability of the ion. It is how-

ever, important to note that the potential terms are purely numerical in nature, and

whilst comparison with physical properties may be possible (and helpful) for some

cases, caution should be exercised. The C6,ij term takes the correlation effect into

consideration and as such has an intermediate-range effect. The justification for the

C6,ij term inclusion in the short-term potential form is that it is small beyond a few

lattice spacings and so the contribution to the system energy is minimal. As such,

the C6,ij term is subjected to a cut-off of 20 Å. The C6,ij parameter was calculated

via the Slater-Kirkwood formula [52]:
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C6,ij =
3
2
αiαj(

αi

Pi

) 1
2
(

αj

Pj

) 1
2

(2.24)

where αi, αj are the static polarisabilities of ions i and j, and Pi, Pj are the number

of electrons that contribute significantly to the polarisability of ions ions i and j,

i.e. the effective electron numbers of ions i and j. Consequently, C6,ij a function of

the ionic radius, and as such depends on the coordination of the ions.

The determination of the C6,ij term requires knowledge of the in-crystal radius

and the polarisability, αD, of the relevant ions and was calculated using Equation

2.25 [53,54]. The polarisabilities and C6,ij are presented in Tables 2.3 and 2.4

αD =
8

9
a0 (2`+ 1) [a0 < r2 >]2 (2.25)

where ` is the orbital angular momentum quantum number of the electron subshell

concerned, i.e. the outermost occupied/paritially occupied electron shell, the factor

[a0 < r2 >]2 is a form of mean square radius of the outer electron orbit (r is the

radius in dimensionless atomic units and a0 is the radius of the first Bohr orbit in

hydrogen).

The Buckingham potential model has proved to be successful in simulating many

oxide systems [55, 56] and other ionic solids [57, 58]. On this justification, this was

the potential model implemented to describe the short-range interactions in this

study, however a significant problem with the Buckingham potential is that the

energy tends to minus infinity as the ion separation goes to zero (see Figure 2.5));

this region must be inaccessible by making the barrier sufficiently large, this is

particularly problematic in molecular dynamics [43].
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Figure 2.5: The form of the Buckingham Potential for O2−-O2− interaction illus-

trating how the energy tends to minus infinity as the ion separation tends to zero

(see Table 2.6 for parameter values).
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2.3.3 Electronic Polarisability

It is noteworthy that the Buckingham potential is a pair-potential model, i.e. it

operates between two ions at a time (i and j). Other interactions may occur that

operate between three or more ions at a time (many-body interactions). A many

body term is included, through the shell model since the two-body interactions op-

erate between shells (or shell to the core of those ions that are treated as without

a shell). Since the position of the shell (relative to the core) depends on the as-

sumed electro-static interactions from all ions in the crystal, the two-body forces

are mediated via a many-body shell position.

The electronic polarisability of species was determined using the Shell Model which

was originally developed by Dick and Overhauser [59] while Faux and Lidiard [60]

proved its value to defect calculations. The ion is described as having a mass-

less shell (usually for static lattice calculations, for MD a shell can be assigned a

mass) around a central massive core. The core and shell are linked by an isotropic,

harmonic spring with a force constant, k (Figure 2.6). When an electric field is

applied to the ion, the shell is allowed to move relative to the core in such a way

that it develops a dipole and thus simulates the dielectric polarisability of the lattice.

The core and the shell are assigned positive (X · e) and negative (Y · e) charges

respectively such that the sum is equal to the charge on the ion ((X + Y ) · e). The

polarisability, αe, of an isolated ion is given by:

αe =
1

4πε0

(
Y 2

k

)
= 14.3994

(
Y 2

k

)
(2.26)

where Y is the shell charge in electronic charge units, εo is the permittivity of free

space, αe and k are in units of Å3, and eVÅ−2 respectively. For this work, only the
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Figure 2.6: A schematic of the shell model.

oxygen ion is treated as polarisable, and the parameters for this are presented in

Table 2.8.

2.3.4 Cauchy Violation

One of the assumptions made in this model is that the potential is merely a function

of the separation of the ions and not their direction [33]. In other words this is a

centrosymmetric model. This is clearly an approximation since it implies that the

elastic constants c12 and c44 are equal (for a cubic crystal); this is known as the
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Cauchy relationship [61]. Unfortunately this is not found experimentally, and for

many materials the difference between the elastic constants is quite considerable.

The centrosymmetric nature of the model is also manifested in the Shell Model

since this assumes that only dipolar distortions to spherical symmetry are allowed.

Modifications can be made to the shell model in order to model the Cauchy violation.

Schroder allowed the shell to distort in a spherical manner, adjusting the radius of

the shell to create what is known as the breathing shell [62]. The problem with

this model is that it is only able to account for cases where c12 < c44. Sangster

developed a further modification to describe the case where c12 > c44 by allowing

the shell to distort in an ellipsoidal manner [63]. However, these models are hard to

parameterise due to the limited amount of data available. Fortunately for calculating

defect properties and parameters, the centrosymmetric shell model approximation

has proven very successful [33].

2.3.5 Potential Parameters: Fitting

There are two types of approach for determining valid interatomic potentials. These

are empirical fitting (to match experimental data) and energy surface fitting. In the

latter approach, a high quality quantum mechanical technique is used to predict

the interaction energy between ions as a function of ion separation. Parameters are

then chosen to reproduce this energy surface. Throughout this work only potentials

determined empirically were used.

Empirical potential derivation consists of a least squares procedure, whereby the

difference between observed (experiment) and calculated properties are minimized,

i.e.:
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F =
∑

[fobservable − fcalculated]
2 (2.27)

Almost all properties of the material can be used in the derivation process, including

elastic and dielectric constants, lattice energy and phonon data. The prerequisite,

however, is a knowledge of the crystal structure, including the ionic positions and

lattice parameters. Care must be taken when phonon modes are included in the

derivation process since their order can change during the fitting, thus they are

commonly used only to used to ensure that the minimum energy structure is stable

(i.e. all the phonons are positive). It is often the case with empirical fitting that

only the crystal structure is known with any degree of certainty.

Often, more than one set of parameter values can reproduce the physical properties

of the material [64]. However, the test of a successful potential model is the transfer-

ability of the parameters to systems not included in the initial parameter selection.

If the potential set is only able to reproduce the structure for which it was fitted

against, then it is of little use.

The transferability and reliability of the potentials can be improved by including as

much information about the structure as possible (e.g. high frequency and static

dielectric constants, bulk modulus and elastic constants) in the fitting procedure.

Unfortunately, a potential may reproduce such perfect lattice properties, and yet

when defect calculations are performed, its shortcomings become evident. Experi-

ence suggests that such problems are generally avoided if the potential is fitted over

a broad range of interionic separations to allow for the consideration of interstitial

and vacancy defects which alter the equilibrium separation (see Figure 2.2). A useful

method for accomplishing this is to use multi-fitting. Here a cation - anion interac-
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tion is determined against a large number of related compositions with varying ion

separations. This has the added benefit that any errors in the experimental crystal

properties are minimized (see Table 2.5 for examples).

When a range of compositions and interactions are to be studied, it is possible to

impose a self-consistency between them. For example, in this work where the rare

earth elements were to be modelled, the potential parameters were required to vary

in a smooth manner. This is due to the steady decrease in the size of the ions with

increasing atomic number accompanied by a corresponding increase in the number

of electrons in the 4f orbital (the lanthanide contraction). This smooth order can

be imposed onto the potential parameters as a function of the radius of the ion for

which they describe. This imposed order can be seen in the smooth transitions in

the Aij (Figures 2.7(a)), ρij (Figure 2.7(b)) and C6,ij (Figure 2.7(c)) terms.
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(a) (b)

(c)

Figure 2.7: The smooth change in ion radius due to the lanthanide contraction

allows for an imposed order onto the potential parameters (a) Aij, (b) ρij and (c)

C6,ij.

The potential parameters used for this study are presented in Tables 2.6 and 2.7

and were derived via a multi-structure empirical fitting procedure. The Aij and ρij

terms of the Buckingham potential were altered in such a way that they gave good

agreement to the crystallographic properties taken from experimental observations,
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Table 2.5: The percentage agreement with experimental unit cell volumes for the

compounds used for the derivation of the cation - anion potentials.

B Cation

Ga Cr Al Sc Fe Pr Averages

A
C

a
ti

o
n

La 100.47 100.57 101.00 - 99.76 - 100.45

Ce 100.48 98.44 100.73 - - - 99.89

Pr 100.97 97.95 101.37 - 99.90 - 100.05

Nd 100.11 100.49 101.19 - 99.88 - 100.42

Sm - 98.49 101.37 - 100.62 - 100.16

Eu - - - 100.10 - - 100.10

Gd 99.91 100.65 - 100.33 100.01 - 100.23

Tb - - 100.22 - 99.95 - 100.09

Dy - 100.70 - - 99.84 - 100.27

Ho - - 100.17 - 100.15 - 100.16

Er - 100.33 - - 100.06 - 100.19

Yb - - - - 100.15 - 100.15

Lu - - - - 100.46 99.99 100.22

Averages 100.39 99.70 100.86 100.21 100.07 99.99 -
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in particular, the aim was that the average unit cell volume was fitted to within 1%

over the series, both horizontal and vertical, to ensure that the relative Madelung

energies of the lattices were correct. It is important that the potentials are able to

reproduce experimental data so that when they are used to predict structures for

which there is no experimental data, confidence in the model predictions is main-

tained. Similar fitting methods have been used by Binks et al. [34] and Minervini

et al. [5, 26]. The terms in the Shell model were taken from Minervini et al. (Table

2.8) [5]. A more detailed explanation of the fitting procedure used and a discussion

of the merits of this and other potential fitting methods is given by Gale [43].

2.3.6 Potential Model Variation

The results presented in this thesis were based on Buckingham pair potentials (Equa-

tion 2.23). However, in order to improve crystal structure predictions (Figure 3.10)

the potential model was altered. Such modifications were however, within the scope

of the Buckingham model and involved changes in and extensions to the standard

Buckingham model by simple additions to its functional form as follows:

• Changes in the co-ordination dependency of the C6,ij term.

• The addition of a double exponential term for the oxygen-oxygen interaction.

• The addition of a damped coulombic interaction.
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Table 2.6: Short-range potential parameters used for perovskite materials.

Species Aij (eV) ρij (Å) C6,ij (eVÅ6)

O2−-O2− 9547.96 0.2192 32.0

Al3+-O2− 1365.79 0.30096 2.538

Ce3+-O2− 2034.18 0.34380 15.86

Cr3+-O2− 1452.25 0.30918 4.472

Dy3+-O2− 1767.64 0.33770 10.94

Er3+-O2− 1678.21 0.33781 10.81

Eu3+-O2− 1886.71 0.33975 11.997

Fe3+-O2− 1478.98 0.31306 6.960

Ga3+-O2− 1456.72 0.30988 4.616

Gd3+-O2− 1868.75 0.33880 11.62

Ho3+-O2− 1726.29 0.33776 10.72

In3+-O2− 1595.65 0.32960 7.402

La3+-O2− 2051.32 0.34585 15.51

Lu3+-O2− 1561.36 0.33854 10.01

Nd3+-O2− 1979.11 0.34148 13.07

Pr3+-O2− 2025.54 0.34270 13.83

Sc3+-O2− 1587.95 0.32190 8.143

Sm3+-O2− 1944.44 0.34080 12.49

Tb3+-O2− 1818.00 0.33845 14.33

Y3+-O2− 1721.23 0.33821 10.29

Yb3+-O2− 1616.68 0.33798 13.34

Table 2.7: Short-range potential parameters used for fluoride materials.

Interaction Aij (eV ) ρij (Å) C6,ij (eVÅ6)

F−-F− 1317.50 0.27530 13.8

Li+-F− 574.80 0.25530 0.0

Zn2+-F− 918.41 0.28481 0.0

Co-ordination Dependency of C6,ij

The value of the C6,ij term is determined via calculation by using the Slater-

Kirkwood equation (Equation 2.24). This approach requires the use of the in crys-
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Table 2.8: Shell Parameter for O2− [5, 34]

Species Y (e) k (eVÅ−2)

O2− -2.04 6.3

tal ion radius. The C6,ij derived for this work used an effective ionic radius for all

cation - anion potentials. This effective ionic radius was taken from Grimes and

Grimes [53,54]. However, cations at different lattice sites were subjected to different

anion coordinations and consequently exhibited different cationic radii (the A cation

being 12 fold oxygen co-ordinated has a larger radius than a B cation which is 6

fold coordinated). The values of Grimes and Grimes [53, 54] represent an average

(roughly 6 co-ordinate). It was therefore pertinent that the potential should reflect

this difference between the A and B cation co-ordination. As such, a co-ordination

specific model was determined, whereby the cation radii were chosen to match the

coordinations of the relevant ion. It can be seen from Tables 2.1 and 2.2 that the 12

co-ordinate radius is larger than the corresponding 6 co-ordinate radius. This co-

ordination specific radius was then used to determine a modified value for C6,ij and

then in turn, the Aij and ρij potential parameters were re-derived (the site specific

C6,ij potentials are shown in Table 2.9). The effective co-ordinate and co-ordinate

specific C6,ij values are shown in Table 2.10.

Double Exponential Oxygen

The next step was to consider altering the O2−-O2− Buckingham potential although,

of course this interaction affects all others in the system. There have been many

different oxygen interactions used, however one that has proved successful is that

used by Catlow [2]. In order to incorporate this Catlow oxygen interaction into the
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Table 2.9: Short-range potential parameters used for perovskite materials based on

the site dependent C6,ij term.

Species Aij (eV) ρij (Å) C6,ij (eVÅ6)

O2−-O2− 9547.96 0.2192 32.0

Al3+-O2− 1365.79 0.30096 1.499

Ce3+-O2− 2034.18 0.34380 18.30

Cr3+-O2− 1452.28 0.30918 2.827

Dy3+-O2− 1767.64 0.33770 12.24

Er3+-O2− 1678.21 0.33781 11.59

Eu3+-O2− 1886.71 0.33975 13.53

Fe3+-O2− 1478.98 0.31306 6.127

Ga3+-O2− 1456.72 0.30988 2.930

Gd3+-O2− 1868.75 0.33880 13.013

Ho3+-O2− 1726.29 0.33776 12.00

In3+-O2− 1595.65 0.32960 5.211

La3+-O2− 2051.32 0.34585 17.70

Lu3+-O2− 1561.36 0.33854 11.32

Nd3+-O2− 1979.11 0.34148 14.96

Pr3+-O2− 2025.54 0.34270 16.05

Sc3+-O2− 1587.95 0.32190 5.581

Sm3+-O2− 1944.44 0.34080 14.15

Tb3+-O2− 1818.00 0.33845 12.76

Y3+-O2− 1721.23 0.33821 7.550

Yb3+-O2− 1616.68 0.33798 11.55

oxygen interaction already in use for this work, a double exponential oxygen model

was introduced. The form of this can be seen in Equation 2.28.

V (rij) =

(
Aij

2

)
exp

(
−rij

ρij,1

)
+

(
Bij

2

)
exp

(
−rij

ρij,2

)
− C6,ij

r6
ij

(2.28)

Here, the Aij and C6,ij terms are those taken from the Binks oxygen potential [1],
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Table 2.10: Comparison between the effective radius and co-ordinate specific radius

C6,ij value (eVÅ6).

Interaction
Effective Site Specific

Co-ordination Co-ordination

O2−-O2− 32.0 32.0

Al3+-O2− 2.538 1.499

Ce3+-O2− 15.86 18.300

Cr3+-O2− 4.472 2.827

Dy3+-O2− 10.94 12.240

Er3+-O2− 10.81 11.590

Eu3+-O2− 11.997 13.530

Fe3+-O2− 6.960 6.127

Ga3+-O2− 4.616 2.930

Gd3+-O2− 11.62 13.013

Ho3+-O2− 10.72 12.000

In3+-O2− 7.406 5.211

La3+-O2− 15.51 17.700

Lu3+-O2− 10.01 11.320

Nd3+-O2− 13.07 14.96

Pr3+-O2− 13.83 16.05

Sc3+-O2− 8.143 5.581

Sm3+-O2− 12.49 14.15

Tb3+-O2− 14.33 12.76

Y3+-O2− 10.29 7.550

Yb3+-O2− 13.34 11.55

while the Bij is the Aij term from the Catlow potential [2]. The two potentials are

shown in Table 2.11 and the forms are shown in Figure 2.8(a).
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Table 2.11: Comparison between the Binks [1] and Catlow O2−-O2− potentials.

Potential Aij (eV) ρij (Å) C6,ij (eVÅ6)

Binks 9547.96 0.2192 32.0

Catlow 22764.3 0.1490 27.8

Table 2.12: Short-range potential parameters used for perovskite materials based

on the double exponential oxygen term.

Species Aij (eV) ρij (Å) C6,ij (eVÅ6)

O2−-O2− 4773.98 0.21910 32.00

O2−-O2− 11382.15 0.14900 0.0

Al3+-O2− 1412.20 0.30096 2.538

Ce3+-O2− 2032.94 0.34380 15.86

Cr3+-O2− 1500.68 0.30918 4.472

Dy3+-O2− 1778.50 0.33770 10.94

Er3+-O2− 1700.81 0.33705 10.34

Eu3+-O2− 1888.10 0.33974 11.997

Fe3+-O2− 1510.00 0.31306 6.960

Ga3+-O2− 1488.22 0.30988 4.616

Gd3+-O2− 1854.73 0.33880 11.62

Ho3+-O2− 1735.99 0.33776 10.72

In3+-O2− 1600.35 0.32960 7.402

La3+-O2− 2040.50 0.34572 15.51

Lu3+-O2− 1625.65 0.33680 10.01

Nd3+-O2− 1985.63 0.34095 13.07

Pr3+-O2− 2015.13 0.34258 13.83

Sc3+-O2− 1610.47 0.32190 8.143

Sm3+-O2− 1925.16 0.34080 12.49

Tb3+-O2− 1815.81 0.33900 14.33

Y3+-O2− 1708.82 0.33821 10.29

Yb3+-O2− 1658.86 0.33695 13.34
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(a)

(b)

Figure 2.8: (a) Comparison between the O2−-O2− potentials from Binks [1], Catlow

[2] and the double exponential model; (b) modification of the Al3+-O2− interaction

energy.
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Damped Coulombic Potential

This potential model aims to better account for the large amount of electronic

overlap between the cations and the oxygen ions at the short interatomic separations

that occur at lower coordination states (e.g. 5 and 7 coordination with respect to

the 6 and 12 coordination for the classical perovskites see Chapter 3) Physically, this

reduces the coulomb interaction between formal charged ions at short separations.

The coordination states should thus be biased toward Pnma from P63cm. For this

purpose, a potential model was developed by Grimes and Redfern and termed a

“damped Coulombic Potential” [65]. In essence, this model is equivalent to the

standard partial charge model at short separations however at larger distances, the

effect of the dampening is negligible and ions interact as formal charged species.

For this model, the scale of the electrostatic interaction between ions decreases

exponentially with decreasing ionic separation. The general form of the potential is:

V (rij) =
qiqj

4πε0rij

(
1− exp

(
−rij

ρij

))
(2.29)

Since this new potential form is not one of the standard “classical” potential forms

included for use with GULP, the damped coulombic model has to be modified such

that it fits the GULP general potential model:

V (rij) = Dij exp

(
−rij

ρij

)
r−m
ij − Cr−n

ij (2.30)

It is clear how this is achieved if Equation 2.29 is expanded as;
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V (rij) =
qiqj

4πε0rij

−
(

qiqj
4πε0rij

)
exp

(
−rij

ρij

)
(2.31)

The initial coulombic interaction term is then the standard coulombic interaction

and is treated as usual within the code. The remaining “damped coulombic” term

is rearranged such that it fits a general potential model (Equation 2.30):

V (rij) =
Dij

rij

exp

(
−rij

ρij

)
(2.32)

The damped coulombic term of the potential can now be compared to this new

general potential form in order to elucidate the constant terms:

− qiqj
4πε0rij

exp

(
−rij

ρij

)
=
Dij

rij

exp

(
−rij

ρij

)
(2.33)

In Equation 2.30, the C value is set to zero, the exponent m is set to 1, and the Dij

term is:

Dij = − qiqj
4πε0

(2.34)

thus, the only variable input into the general potential equation is the ρij which here

is fixed so that the damped coulombic contribution to the total energy is only 1%

at the sum of the six coordinate ionic radii (Ri +Rj), i.e.:

exp

(
−rij

ρij

)
= 0.01|rij=(Ri+Rj) (2.35)
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Tables 2.13 and 2.14 show a limited set of parameters that were used for the general

potential. Figure 2.9 shows a comparison of the effective co-ordination potential

and the damped coulombic potential for the La3+-O2− interaction. It is clear that

the energy minima is translated to higher separations, thus biasing the high co-

ordinations. The motivation for the derivation of this model was an attempt to

predict the dissociation of the perovskite into two distinct garnet phases.

Table 2.13: Damped coulombic model parameters for input into the general poten-

tial for GULP.

Interaction Dij ρij

Al3+ core - O0.04+ core -0.10785 0.42018

Al3+ core - O2.04− shell 5.50038 0.42018

Al3+ core - Al3+ core -8.08880 0.34027

Al3+ core - La3+ core -8.08880 0.34027

La3+ core - O0.04+ core -0.10785 0.52810

La3+ core - O2.04− shell 5.50038 0.52810

La3+ core - La3+ core -8.08880 0.34027

O0.04+ core - O0.04+ core -0.00144 0.60801

O0.04+ core - O2.04− shell 0.07334 0.60801

O2.04− shell - O0.04+ core 0.07334 0.60801

O2.04− shell - O2.04− shell -3.74026 0.60801

Table 2.14: Short-range potential parameters used for perovskite materials based

on the damped coulombic model.

Species Aij (eV) ρij (Å) C6,ij (eVÅ6)

O2−-O2− 9547.96 0.21910 32.00

Al3+-O2− 1359.79 0.30096 2.538

La3+-O2− 2044.32 0.34572 15.51
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Figure 2.9: Comparison of the effective co-ordination and damped coulombic po-

tentials for the La3+-O2− interaction.

Cation Shell Model

In addition to predicting the crystal structure of the wide range of perovskite com-

positions, a potential model should also be able to predict dielectric properties. An

important contribution to the dielectric constant of a material is from the electronic

behaviour. This is modelled using the shell model. In order to improve predictions

of the dielectric constant, the shell model was investigated and shells were added to

the cations (leaving the oxygen shell unaltered). The addition of these cation shells

was designed to increase the contributions to the dielectric constant.

The rationale behind the decision to define the shell charge as negative (with a

positive core) lies with the make-up of the atom. This consists of a positive nucleus

surrounded by a negative cloud of electrons, therefore it was logical to translate this

to the shell model. The value assigned to the shell charge was determined from the

the ratio of the effective electron number taken from Grimes and Grimes [53, 54]
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to the shell charge on the oxygen ion. Therefore the shell charges are consistent

throughout. These modified effective electron numbers (shell charges) are shown in

Tables 2.3 and 2.4. The shell spring constant was also determined in a consistent

manner, and is related to the ionic polarisability taken again from Grimes and

Grimes [53, 54]. The shell parameters for these potentials are shown in Table 2.15,

with the Buckingham potentials corresponding to those shown in Table 2.16.

Table 2.15: Cation shell parameters.

Species Y (e) k (eVÅ−2)

Al3+ -0.193 275.1

Ce3+ -0.56 292.42

Cr3+ -0.293 333.73

Dy3+ -0.44 270.2

Er3+ -0.427 274.4

Eu3+ -0.46 265.82

Fe3+ -0.427 456.4

Ga3+ -0.3 337.23

Gd3+ -0.453 264.77

Ho3+ -0.44 274.57

In3+ -0.353 266.17

La3+ -0.53 267.4

Lu3+ -0.43 291.37

Nd3+ -0.48 260.05

Pr3+ -0.5 269.32

Sc3+ -0.42 357.87

Sm3+ -0.473 267.75

Tb3+ -0.453 271.42

Y3+ -0.453 264.42

Yb3+ -0.453 279.3
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Table 2.16: Short-range potential parameters used for perovskite materials with

cation shells.

Species Aij (eV) ρij (Å) C6,ij (eVÅ6)

O2−-O2− 9547.96 0.2192 32.0

Al3+-O2− 1765.52 0.2873 2.538

Ce3+-O2− 1080.51 0.3815 15.86

Cr3+-O2− 1292.28 0.31646 4.472

Dy3+-O2− 840.00 0.3866 10.94

Er3+-O2− 790.926 0.388 10.34

Eu3+-O2− 925.00 0.386 11.997

Fe3+-O2− 1505.98 0.312 6.960

Ga3+-O2− 1335.72 0.315 4.616

Gd3+-O2− 900.25 0.385 11.62

Ho3+-O2− 820.77 0.387 10.72

In3+-O2− 775.81 0.37954 7.402

La3+-O2− 1115.79 0.38147 15.51

Lu3+-O2− 710.81 0.3932 10.01

Nd3+-O2− 1002.47 0.3819 13.07

Pr3+-O2− 1050.00 0.3813 13.83

Sc3+-O2− 754.43 0.37183 8.143

Sm3+-O2− 950.664 0.3848 12.49

Tb3+-O2− 870.00 0.3868 14.33

Y3+-O2− 825.00 0.3862 10.29

Yb3+-O2− 750.008 0.391 13.34

2.4 The Defective Lattice

In order to efficiently simulate the lattice relaxation around defects, a multi region

approach is adopted which stems from the work of Mott and Littleton [33,66]. The

lattice is partitioned into concentric spherical regions centred on the defect (Figure

2.10). The area surrounding the defect is termed Region I, here lattice relaxation is
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Figure 2.10: Representation of the Multi Region Approach

large, so all interactions are calculated explicitly, while all ions are relaxed to zero

force using a Newton-Raphson minimization procedure [18]. Beyond Region I, the

lattice relaxation is smaller and as such a more approximate approach can be used.

This region is termed Region II, here the interaction is treated as arising from the

net charge effect of the defect.

The size of Region I was chosen such that a further increase yields no appreciable

change (less than 0.1 eV for an increase in region size of 1 Å) in the defect energy,

whilst being small enough for computational efficiency (see Figure 2.11).

Within the two-region approach the defect formation energy, Ed, can be expressed

as [25,67]:
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Figure 2.11: Defect energy variations with changing region size for an antisite

defect, AX
B .

Ed = EI(r) + EI−II(r, ζ) + EII(ζ) (2.36)

where EI is the energy due to the interactions of ions in region I while r is their

displacement vector; EII is the energy of region II for which the displacement vector

is ζ; and EI−II is the energy of the interaction between regions I and II. Since region

II extends to infinity, EII is the summation of an infinite number of displacements

and as such cannot be solved exactly. If, however, it is assumed that all displace-

ments within region II are small, then the quasi-harmonic approximation is valid,

such that:

EII =
1

2
ζ.A.ζ (2.37)
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where A is the force constant matrix. Substituting Equation 2.37 into Equation

2.36, and differentiating with respect to ζ, the equilibrium displacements in region

II are given by:

δE

δζ
=
δEI−II(r, ζ)

δζ
|ζ=ζe

+ Aζe (2.38)

where ζe is the equilibrium value of ζ corresponding to r. When this is substituted

into Equation 2.37 and then into Equation 2.36, the explicit dependence of Ed on

energy of region II, EII , is removed allowing a far more convenient solution:

Ed = E1(r) + EI−II(r, ζ)−
1

2

δEI−II(r, ζ)

δζ
|ζ=ζe

· ζe.ζe (2.39)

Original versions of this method only partitioned the lattice into two regions. How-

ever, in order to ensure a smooth transition between Region I and Region II, Region

II is split into areas called Region IIa and Region IIb. In Region IIa, which acts

as a transition region between Region I and Region IIb, the Mott-Littleton approx-

imation [33, 66] is used to calculate the polarisation, P , at a distance, r, from the

defect of charge, q:

P (r) =
qr

4πr3

(
1− 1

ε0

)
(2.40)

where ε0 is the static dielectric constant of the crystal (note: the above uses atomic

units). Within Region IIa the displacements of the ions are calculated via direct

summation, using the Mott-Littleton approximation due to all defect components

within Region I.
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2.5 Energy Minimization

Once a model has been adequately validated, in order to be made useful in a pre-

dictive manner, it must be combined with energy minimization. This reduces the

system to a state of mechanical equilibrium. The criterion used for determining the

accuracy of the model is that the ion displacements in the optimised structure from

the experimental configuration are minimal. During energy minimization, all ionic

interactions are calculated and each ion moves a distance proportional to the force

acting on it through an iterative process.

Two conditions exist to minimize the lattice energy at equilibrium: constant vol-

ume and constant pressure (it is also possible to equilibrate under constant stress

conditions but this is not discussed further.). Under constant volume minimiza-

tion, the lattice energy is minimized only by varying the internal coordinates of the

ions within the unit cell relative to the strains on individual ions, whilst the lat-

tice parameters are not allowed to change. Under constant pressure minimization,

the unit cell dimensions are also adjusted, accounting for the strains on both the

individual ions and the unit cell. Since there are fewer degrees of freedom for the

constant volume calculations, they are computationally faster. Consequently, most

early calculations were constant volume. Due to the increase in computation power

available, nearly all modern calculations are of the constant pressure type, including

all those included in this thesis.

If the lattice energy (UL) of a system with N ions with coordinates, r, is UL(r), then

after one minimization step, the lattice energy at a new set of coordinates, r′ is:
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UL(r′) = UL(r) + ~gT · ~δ +
1

2
~δT ·W · ~δ (2.41)

where W is a matrix that contains the corresponding second derivatives (Equation

2.45); ~δ is a generalised strain vector with 3N displacement components; ~δr, and 6

independent bulk strain components; ~δε of the symmetric strain matrix E, which is

the Voigt matrix representation of the vector ~δε:

E =

 δε1
1
2
δε6

1
2
δε5

1
2
δε6 δε2

1
2
δε4

1
2
δε5

1
2
δε4 δε3

 (2.42)

therefore the set of new coordinates, r′ is related to the original set, r, by:

r′ = E · (r + δr) (2.43)

The vector ~g, refers to the first derivative of the lattice energy with respect to the

ion displacements and strain components;

~g =

(
∂UL

∂r
,
∂UL

∂δε

)
(2.44)

while the matrix W contains the corresponding second derivatives;

W =

(
∂2UL

∂r·r
∂2UL

∂r·E
∂2UL

∂E·r
∂2UL

∂E·E

)
=

(
Wrr WrE

WEr WEE

)
(2.45)

The system is then relaxed iteratively, adjusting the coordinates of the ions until

the forces on the ions are zero. Since the first derivative of the lattice energy with
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respect to distance (coordinates) is the force, it is possible to write this convergence

aim as:

∂UL

∂r
= F = 0 (2.46)

in practice, the minimization proceeds for a pre-set number of iterations or until a

point where at subsequent steps, the total energy of the system changes by less than

a predetermined value.

2.6 Ion Migration Activation Energies

The bulk transport properties of intrinsic defects can be calculated very simply by

performing numbers of static lattice defect calculations at different points through-

out the lattice. This method is only applicable when the migration process is con-

trolled via a thermally activated hopping mechanism. When this is the case, then the

energy difference between a migrating ion at a saddle point (local energy maximum,

see Figure 2.12) and an isolated ion represents the energy barrier for migration of

that ion. The location of this saddle point is determined by compiling contour plots

of defect energies between the start and end points of the migration. It is then as-

sumed that the defect will follow a lowest energy pathway, and hence the migration

path and saddle point energy can be determined. The saddle point is confirmed by

carrying out energy calculations perpendicular to the migration pathway.
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Figure 2.12: Example ion migration plot.

Figure 2.13: Schematic of ion migration calculations in ZnF2.

In order to calculate this energy contour, the migrating defect is rastered across a

plane parallel to the direction of migration and to ensure that a valid minimum is

located, planes either side of this are also calculated, and one perpendicular. An
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example of this approach, whereby an interstitial defect is migrating in the (100) of

a ZnF2 lattice, is shown in Figure 2.13, and the associated contour plot is shown in

Figure 2.14 (the results are discussed in Chapter 6).

Figure 2.14: Migration energy contour plot for ion migration in ZnF2

Other more automated techniques such as nudged elastic band methods [68, 69]

maybe used in the future. However they are far more computationally expensive.

2.7 Quantum Mechanical Calculations

2.7.1 General Considerations

Quantum mechanics provides a reliable method to calculate the total energy of an

ensemble of electrons and atomic nuclei in a perfect or defective lattice. One of the

postulates of quantum mechanics is that the state of a system can be fully described

by a mathematical function Ψ(r1, r2, ...., t) where r1, r2 are the spacial coordinates

of particles 1, 2 etc. that constitute the system and t is the time. This is known as
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the wavefunction of the system and can be evaluated by solving a wave equation,

known as the Schrödinger equation [70]. All the properties of the system can be

evaluated from the wavefunction. Such analysis can involve calculations based on

fundamental quantum mechanical relationships so that the Schrödinger’s equation

is solved without the use of prior chosen parameters to describe the electrons in

that material. However, even in this case the equations are usually subject to

approximations such as the Born-Oppenheimer [71]. In that case, the positions of

the nuclei can be considered static and only the electrons are considered subject

to the static field of the nuclei (this is based on the assumption that the electron

velocity is so much higher than that of the nuclei that the position of the latter is

effectively fixed). The problem with such ab initio approaches is that exact solutions

are immensely computationally demanding for a system involving anything other

than a single electron in a simple potential. This is due to the complex interactions

between electrons.

In general, the problem is handled by approximating electron interactions so that

each electron is assumed to be in an effective potential generated by all the other

electrons and the nuclei. The specific interactions are thus managed in an average

manner within this potential so that one electron is dealt with at a time, i.e. the

interactions are decoupled and the wave function is now:

Ψ(~r1, ~r2, ~r3, ..., ~rn) = Ψ(~r1)Ψ(~r2)Ψ(~r3)...Ψ(~rn) (2.47)

where Ψn are the n one-electron wavefunctions. This reduces the problem to solving

a series of coupled one-electron Schrödinger equations of the form:
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HΨn =

(
− h̄2

2m
∇2 + Vext + Veff

)
Ψn = εiΨn (2.48)

where Vext is the external potential, either due to the nuclei and/or other applied field

and Veff is the effective potential. In general, calculations of this type involve writing

part of the electron-electron interaction in terms of a mean-field. The difference

between this average approach and one in which electron motions are able to take

explicit account of each other is called the correlation (i.e. where the electron paths

are correlated).

There are two possible descriptions of the wavefunction, local orbital and plane-

wave. In the local orbital approach, the wavefunctions are located at single atomic

nuclei and was originally developed for molecules. This approach was not used in

these studies.

The plane-wave approach describes an infinite periodic system, in other words a

perfect solid. The plane-wave approach has the benefits that all space is treated the

same, it is mathematically simple, and does not depend upon the atomic positions.

However disadvantages also exist, such that empty space is treated to the same

level as an area of importance for property determination such as electron overlap.

The quality of the calculation depends on a single energy cut-off parameter. This

parameter is expressed as the energy of a free electron whose wavefunction has the

same wavevector as the smallest plane wavevector. All plane waves of energy less

than this cut-off energy are used in the calculation [72].

Problems occur with both approaches when defects are involved, i.e. when there is

a local defect placed within an infinite solid. For such calculations neither approach

is perfect but here calculations of the plane-wave variety were chosen for this work.
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2.7.2 The Hartree-Fock approach

An early approach for the development of a computational method was developed

by Hartree [73, 74] who set Veff to the average of the Coulomb potential between

an electron and all other electrons in the system. The Hartree method neglects

exchange and correlation, and therefore yields somewhat poor results. Exchange is

a result of the indistinguishability of electrons and results from the fact that the

wavefunction describing the pair must be anti-symmetric [75] (a requirement of the

Pauli exclusion Principle [76]). When Fermi statistics are added to this approach,

the Hartree-Fock (HF) method is formed. This now calculates the exchange energy

exactly, however, it still neglects the correlation energy. This technique has enabled

many advances, and is often the platform from which more accurate calculations are

built.

2.7.3 Density Functional Theory

A subtly different approach to HF is that of density functional theory (DFT). The

popularity of DFT is due to the fact that it is less computationally demanding than

HF calculations and that predictions for systems involving d-block metals agree

more closely to experiment than those for HF [77]. This technique was initially

developed by Hohenberg, Kohn and Sham [78–80], and resulted in a Nobel prize

for chemistry in 1998 for Walter Kohn and John Pople [72]. DFT is based on

two simple principles [72, 78]. First, the total energy of a system of electrons and

nuclei is a unique functional of the electron probability density, i.e. the density

uniquely determines the potential acting on the electrons. The second principle, is

that the variational minimum of the energy is exactly equivalent to the true ground
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state. The variation principle seeks the parameter values that minimize the energy,

with the resulting wavefunction being the optimum wavefunction of the selected

form [81]. The concept of the density functional for the energy is the basis of early

approximate models such as the Fermi-Thomas method [82, 83] and the Hartree-

Fock-Slater method [84]. It was not until 1964 that a formal proof was derived to

show that the ground state electronic properties can be uniquely determined by the

electron density [78]. However, these do not suggest the form that any functional

should take, only that one exists.

The benefit of DFT is that no attempt is made to calculate the many-body wavefunc-

tion. The energy is instead simply written in terms of the electron density. This,

in effect, removes with the huge complexity of a multidimensional wavefunction.

Although the simplification is immense, the theory remains general. The energy is

then written:

E = E[ρ(r)] =

∫
drVext(r)ρ(r) + F [ρ(r)] (2.49)

where ρ(r) is the charge density function and F is a universal functional of the

charge density and a function of the electron kinetic energy, Hartree Coulomb term,

and the exchange-correlation functional. The method works so long as the energy

of Equation 2.49 is a minimum for the correct density function.

The problem remains that a value for the exchange-correlation energy (Exc) is un-

known. The benefit of DFT is that very simple approximate functionals work. A

widely used approximation is the local-density approximation (LDA). LDA states

that Exc can be calculated by assuming that for each infinitesimally small element,

the Exc is that of a uniform electron gas. This is clearly inadequate since the charge
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density is highly non-uniform about an atom. However, LDA is a very effective

method for calculating Exc and hence, LDA methods yield good results and works

for many cases [85, 86]. Instances where this approximation are poor are generally

due to spatial variations in the charge density. As such, the generalized-gradient

approximation (GGA) is used which includes the gradient dependence of the den-

sity [85].

It is important to note that despite the successes of DFT through LDA and GGA,

these are still far from ideal and rely on not only an assumption but also parame-

ters for the functionals. The functionals for Exc are the major approximation and

are postulated from physically reasonable assumptions, and their use is justified a

posteriori by their success.

2.8 Simulation Codes

Two simulation codes were employed to conduct static lattice calculations, CAS-

CADE (Cray Automatic System for the Calculation of Defect Energies) [87] and

GULP (General Utility Lattice Program) [88, 89]. CASCADE was originally de-

veloped at the Daresbury Laboratory for the CRAY-1 computer and was based on

the original HADES (Harwell Automatic Defect Examination System) code [90,91].

GULP was written as an improved code and incorporates automatic empirical po-

tential fitting routines and calculation of phonon spectra. GULP was used for si-

multaneous multi-structure fitting of potential parameters.

The CASTEP code [72] was used for all quantum mechanical calculations, and is a

part of the Accelrys Materials Studio Package.
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2.9 Contour Plots

Due to the nature of many of the results presented in this thesis, contour plot

representations of the data have been employed as they facilitate easy identification

of regions of compositional interest. An example contour plot is given in Figure

2.15. The plots are generated by ordering the A and B cation radii along x and y

axes, respectively. Compounds for which a property has been calculated therefore

form a grid of points. The materials property of interest (the independent variable)

is displayed by the contours of varying colour. Warm colours represent high values,

whilst cool colours represent low values. The compositions for which calculations

have been performed are shown by different points overlaid on the plot. The contour

lines themselves connect equal property values. In order to facilitate comparisons

between different crystal structures, all results are plotted against the VI coordinate

ionic radii taken from Shannon [30] so that a full set of consistent ionic radii are

available. The ionic radii are simply used as an order parameter.

Data values that fall between simulation results were interpolated via the Kriging

method. The Kriging method is a modified weighted average interpolation approach.

The weights are calculated by solving sets of linear equations based on the variance

of the data being interpolated [92,93]. The benefit of the Kriging method over that

of other interpolation schemes, is that the original dataset remains unchanged after

the interpolation has been performed. The Kriging method has its roots in geology

and the analysis of maps.

The data interpolation and the generation of the resulting contours were performed

using MicroCal Origin Pro 6.1 [94].
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Figure 2.15: Example contour map used to display results presented in this thesis.
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