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Abstract

When engineering alloys come into contact with an environment a corrosion reaction will
occur at the interface and reaction products form. The stabilities of such products are
key to the corrosion performance of the alloy. A detailed understanding of how corrosion
products behave at the atomic level would be of great significance for the development and
optimisation of alloy compositions.

In this thesis atomic scale simulation techniques have been used to model the incor-
poration of foreign elements in corrosion products and the impact on transport properties.
Two systems are studied: NiF; which is formed on nickel alloys in fluorine environments,
and MOz corundum structures that form on aluminium and steel alloys in oxidising envi-
ronments.

Itis recognised that further simulation advances will be required before atomic defect
simulation can be used to predict large volume and long time scale processes. As such, a
simulation method is reported which offers advantages over traditional techniques and can
predict atomic surface structure evolution over extended timescales. Here, model systems
consisting of a gas monolayer on atomically rough metal surfaces are investigated; results
are presented in analytical and graphical forms.
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Nomenclature

The notation devised by Kroger and Vink [1-3] will be used to describe various defect
species in reactions. The upper case characters A, B, C and D will be used to denote 1+,
2+, 3+ and 4+ charged cations respectively. Anions will be denoted by their atomic symbol.
Thus, for example, the generic representation for binary fluorides with a stoichiometry
similar to CaF, will be BF,. The generic representation of a 3+ cation on a 4+ host cation
site will be C’D. To indicate a defect concentration, the defect species is enclosed in square
brackets, for example [Cp].

Throughout this thesis reaction energies are be referred to by the symbol AHgp,
where sub will identify a reaction the energy is associated with. In the case of intrinsic
reaction energies sub will indicate a reaction type (e.g. an— fren for an anion Frenkel
reaction) and is specific to the relevant chapter. In the case of other types of reaction sub
will indicate an equation number which will identify the reaction it refers to. Additionally,
a label denoting the reaction type may appear with the equation number. For example,
AHgy (5.8) indicates that this energy is for equation 5.8 which is a solution reaction.
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