
Part II

Energy Minimisation Simulation of Bulk

Materials

“What has mood to do with it?

You fight when the necessity arises–no matter the mood!

Mood’s a thing for cattle or making love or playing the baliset.

It’s not for fighting.”

–the words of Gurney Halleck
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Chapter 3

Methodology Associated with Energy

Minimisation

3.1 Bulk Lattice Simulation Detail

The initial phase of any lattice simulation is to evaluate the lattice energy, UL, of the

system. At the same time physical properties can be found from the first and second

derivatives of the lattice energy with respect to interatomic separation. The accuracy of this

data compared to experimentally derived results provide a means of verifying the model

parameters. Here the lattice energy is found by summation of the energy contribution from

all ion pair interactions,

UL � 1
2

n

∑
i & 1

n

∑
i '& j

Φi j � ri j � (3.1)

where Φi j � ri j � is the two body interaction energy � Φlr � ri j � � Φsr � ri j �(� and n is the number

of atoms in the system. Note the term 1
2 is due to a double counting of interactions.

Self interactions are also avoided in the summation. With reference to chapter 2, the

mathematical form of Φlr � ri j � is equation 2.3 and Φsr � ri j � can be any of 2.4-2.9. Due to

its previously mentioned success the Buckingham potential is used for polarisable ions in
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this work and less polarisable cations are modelled with the Born-Mayer potential. Thus,

expanding 3.1,

UL � 1
2

n

∑
i & 1

n

∑
i '& j ) qiq j

4πε0ri j
� Ai j exp � 
 ri j

ρi j � 
 Ci j

r6
i j * (3.2)

As the number of atoms in the system increases the solution of equation 3.1 tends toward

the lattice energy. Herein lies a computational problem. Since the coulombic interaction

operates over a long range, the evaluation of such a large number of coulombic interactions

is computationally expensive. While this can be overcome with more powerful computers

and series approximation mathematics, the computation is further complicated since the

order in which the summation is performed influences the final result. No such problem

is encountered with the short range term as it is truncated at approximately 20Å. This

convergence issue, for the long range term, is overcome by applying the method due to

Ewald [18].

3.1.1 Ewald Summation

The Ewald method calculates the electrostatic potential acting on a object ion, i, in a lattice.

The lattice is made up of ions acting as an array of positive and negative charge points.

The total potential, φ, acting on the object ion by the array of point charges is separated

into two components. One part in real space, φ1, and the other in reciprocal space, φ2,

such that,

φ � φ1 � φ2 (3.3)

The real part, φ1, comprised of the array of point charges is countered by an array of

Gaussian charge distributions equivalent in magnitude but opposite in charges (see figure

3.1). Thus, each ion is effectively neutralised and neighbouring ions no longer interact.

The reciprocal part, φ2, comprises an array of Gaussian charge distributions, φL,

with equivalent charge and magnitude as the original point charge array. However, since in
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a Madelung array of ions individual ions do not feel their own electrostatic field, the charge

distribution of the object ion, φi, is removed from the reciprocal part (see equation 3.4 and

figure 3.2).

φ2 � φL 
 φi (3.4)

Figure 3.1: Graphical representation of φ1 in a 1-dimensional lattice. Arrows represent

point charges which are countered by Gaussian charge distributions of equivalent

magnitude but opposite charge.

(a) φL (b) + φi (c) φL + φi , φ2

Figure 3.2: Graphical representation of the construction of φ2 in a 1-dimensional lattice:

a) array of Gaussian distributions, φL, b) oppositely charged Gaussian distribution of the

object ion, 
 φi, c) combined effect (φL 
 φi) whereby the object ion does not feel its own

electrostatic field.

When φ1 and φ2 are combined, the Gaussian charge distributions cancel and the

overall potential of the array is reduced to that of the original point charge array. The
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purpose of the Gaussian distributions is to create smoothly varying functions which con-

verge rapidly. This benefits the summation such that rapid convergence of φ1 and φ2 (and

therefore φ) can be achieved.

Potential φ1, evaluated at the object ion, has three components: the point charge

associated with the object ion, the Gaussian distribution within a sphere of radius ri j

(distance to the nearest neighbour of the object ion) and the Gaussian distribution of the

object ion outside the sphere. For an object ion interacting with a lattice of ion, j, the real

part of the potential has the form,

φ1 � q j

4πε0
∑

i

qi

ri j
er f c � η 1

2 ri j � (3.5)

where er f c is the complimentary error function which is related to the standard error

function, er f � x � , by,

er f c � x � � 1 
 er f � x � (3.6)

and η is a variable parameter chosen to maximise the efficiency of the convergence.

A Fourier transformation is applied to φ2 so that it converges rapidly in reciprocal

space. Since the system is periodic (i.e. a lattice) φL and its charge density θ can be

expressed as Fourier series:

φL � ∑
G

cG exp i � G � r � (3.7)

and

θ � ∑
G

θG exp i � G � r � (3.8)

where cG and θG are coefficients and G is 2π times the set of reciprocal lattice vectors. The

series converge as G increases and the coefficients decrease. The electrostatic potential

is related to the charge density by Poisson’s equation,

∇2φL �-
 θ
ε0

(3.9)
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Using equation 3.9, φL can be rewritten,

φL � q j ∑
i ) qi

4π
VC

∑
G

� 1
G2 exp 
 � G2

4η � exp 
 i � G � r � � * (3.10)

where VC is the unit cell volume. Note if G � 0 then φ . ∞. However, since the sum of

charges in a unit cell, i, is assumed to be zero, then the whole of the last term can be

ignored when G � 0.

The potential φi at the subject ion due to the Gaussian distribution is,

φi � 2q2
i

ε0
� η

π � 1
2

(3.11)

and substitution of equations 3.10 and 3.11 into equation 3.4 gives,

φ2 � q j ∑
i ) qi

4π
VC

∑
G

� 1
G2 exp 
/� G2

4η � exp 
 i � G � r � � * 
 2q2
i

ε0
� η

π � 1
2

(3.12)

Finally, substituting equations 3.5 and 3.12 into equation 3.3 provides an expression

for the overall coulombic interaction that can be used to obtain the lattice energy.

φ � q j

4πε0
∑

i

qi

ri j
er f c � η 1

2 ri j �
� q j ∑

i ) qi
4π
VC

∑
G

� 1
G2 exp 
 � G2

4η � exp 
 i � G � r � � * (3.13)


 2q2
i

ε0
� η

π � 1
2

It is possible to choose a value for η which will make the Fourier expansion fall off

rapidly and at the same time make the sum of the potentials of the Gaussians converge

conveniently [19].

3.1.2 Energy Minimisation

If potentials precisely reproduce the force field surrounding the ions then the lattice energy

of the simulated crystal will be at a minimum when ionic distances exactly match the
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observed crystal structure. However, this is rarely achievable since potentials are a simple

representation of a more complex distribution of forces. Nevertheless, such potentials

do provide sensible results. In practise the lattice is always relaxed until it reaches a

minimum energy configuration where, even though there may be some error from the

observed structure, lattice strains are minimised. It is of course essential that the relaxed

configuration of the simulation is as close as possible to the observed crystal lattice. In

this way the response of the simulated lattice to point defects will be representative of the

response of the real lattice.

The system is minimised by iteratively adjusting the coordinates of ions until the

forces on the atoms are zero,

∂UL

∂r
� 0 (3.14)

where UL is the lattice energy and r is the coordinate system. The term zero force is

used since the derivative of lattice energy with respect to distance is force. This point will

become useful when the calculation of elastic properties of a lattice are discussed.

Following the method laid out by Catlow and Norgett [20] (more recently detailed by

Catlow and Macrodt [21]), if the lattice energy of a system with coordinates, r, is UL � r �
then the lattice energy at a new set of coordinates r � is,

UL � r � � � UL � r � � gT � δ � 1
2

δT � W � δ (3.15)

where δ is a generalised strain vector with 3N orthogonal displacement components, δr,

and 6 bulk strain components, δε. Thus,

δ �0� δr 1 δε � (3.16)

The vector g corresponds to the first derivatives of the lattice energy with respect to the

ion displacements and strain components,

g �2� ∂UL

∂r
1 ∂UL

∂ε � (3.17)
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and W is the second derivative matrix,

W �43 ∂2U
∂r∂r

∂2U
∂r∂ε

∂2U
∂ε∂r

∂2U
∂ε∂ε 5 (3.18)

The new coordinates r � are related to the original coordinates by,

r � � ∆ε � r � δr � (3.19)

where ∆ε is the Voight matrix representation of the vector δε,

∆ε �768 δε1
1
2 δε6

1
2 δε5

1
2 δε6 δε2

1
2 δε4

1
2 δε5

1
2 δε4 δε3 9: (3.20)

The lattice energy may be minimised by allowing the ion coordinates to change in a

way that reduces the lattice strain. Energy may be minimised with respect to internal unit

cell ion coordinates (i.e. under constant volume conditions). Alternatively, the strain on the

cell vectors may also be minimised (i.e under constant pressure conditions).

To minimise the lattice energy under constant volume differentiate equation 3.15,

with respect to the coordinate system. This is analogous to saying energy, E, can be

expressed as force, F, times distance, d; where the differential, with respect to distance, is

force:

E � F � d (3.21)

∂E
∂d

� F (3.22)

Thus in the case of a lattice where the forces are zero:; ∂UL � r � �
∂r

� 0� ∂UL � r �
∂r � ∂gT

∂r � δ � 0� g � Wδ � 0 (3.23)
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Which leads to a minimum in lattice energy, and zero force, when

g �-
 Wδ (3.24)

and the optimum ion displacements to give the minimum energy are:

δ �<
 W = 1g (3.25)

Thus, new lattice coordinates can be found.

To proceed onto a constant pressure calculation the bulk strains are also minimised

by relaxation of the cell vectors. Bulk strains are defined such that they transform every

vector r in the lattice to r � where,

r � �/� I � ε � � r (3.26)

where I is the identity matrix and ε is the symmetric strain tensor related to equation

3.20. Thus, equations 3.26 and 3.19 can be combined to give the new lattice vectors and

coordinates.

There are several minimisation procedures that can be applied, of which the Newton-

Raphson method is commonly implemented. In this procedure the value of r at the � n � 1 �
iteration is related to the nth iteration by,

rn > 1 � rn 
 W = 1
n � gn (3.27)

3.1.3 Calculation of Physical Properties

In a similar manner to differentiating with respect to ion displacement the first derivative of

the lattice energy with respect to strain is the stress, σ. Applying Hooke’s law, the elastic

constant matrix can be defined.
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∂UL

∂δε
� σ (3.28)

σ � C ε (3.29)

∂UL

∂δε
� C δε (3.30)

where C is the elastic constant matrix. Taking the second derivative of lattice energy with

respect to strain, the elastic constant matrix becomes immediately accessible,

∂2UL

∂δε2 � C (3.31)

3.1.4 Electronic Polarisability

The response of an atoms electron charge density to an electric field is incorporated

through the shell model of Dick and Overhausser [22]. In their model ions are described

with charge divided between a core and a massless shell, as shown in figure 3.3. The

core and shell are coupled by an isotropic harmonic force constant, K. The ion charge

is divided between the core, with charge Xe, and the shell, with charge Ye, so that total

charge on the ion is � X � Y � e. Using this description the electronic polarisability of a free

ion, αe, is

αe � 1
4πε0

� Y 2

K � (3.32)

where K is in units of eVÅ = 2 and ε0 is the permittivity of free space.

With this model dipoles are produced by moving the shell relative to the core. The

ease of this movement (the polarisability) is controlled by the force constant and the

charges on the core and shell. The parameters of the shell model (X , Y and K) are

found by empirical fitting to the dielectric and elastic properties of the crystal. Since

electronic polarisability is the only factor in the high frequency dielectric constant, ε∞, it
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(a) Unpolarised (b) Polarised

Figure 3.3: Graphical representation of the shell model: a) no displacement, unpolarised.

b) displacement, polarised. The blue sphere, representing the core, has charge Xe. The

open gray sphere, representing the shell, has charge Ye. The core and shell are connected

by a spring of force constant K.

is the main fitting observable for the model parameters. The static dielectric constant, εs,

has a contribution from the ionic polarisation of the lattice, which is only operative at lower

frequencies. As such εs is the less important fitting observable.

The usefulness of this model is largely due to its coupling of the short range inter-

action to the polarisability. It is assumed that short range interactions act between shells.

In using this treatment a complex model for ion interactions is formed. This leads to a

much more complex calculation and some of the simplicity of using two body terms is lost.

Naturally this impacts significantly on the computational expense of the simulation.

The shell model is limited, however, since it cannot reproduce the Cauchy violation

[23]. In using two-body terms the calculation of elastic constants will always evaluate C12

equal to C44, however real materials can violate this. The inflexibility arises due to the use

of a fixed radius shell. Techniques have been proposed to correct this issue. By assigning

a real radius to the shell and allowing this to change, values of C12 greater than C44 can

be achieved (i.e. positive deviations only). This is known as a breathing shell model [24].
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Values of C12 less than C44 can only be achieved by allowing ellipsoidal shells [25].

3.1.5 Defective Lattice

Once a minimised lattice has been established defects can be introduced. The response

of the lattice to defect incorporation will be to reduce the energy of the system by further

relaxation of ion coordinates. The majority of the relaxation is assumed to be localised

to a volume surrounding the defects. This allows the the application of a multi-region

approach where an inner, region I, extends from the centre of the defect site to some

predetermined radius. Here interactions are calculated explicitly and all ion displacements

are determined. An outer, region II, extends from the edge of region I to infinity. Region II

is further sub-divided into region IIa and IIb, where IIa acts as a transition between regions

I and II. In region IIa ion displacements and induced moments are inferred from the Mott-

Littleton approximation [26] but interactions with ions in region I are calculated by explicit

summation. The displacements and induced moments of ions in region IIb are inferred

since the total response energy is approximated using the Mott-Littleton equation.

With the Mott-Littleton approximation, the lattice response at distance r, from a

defect of charge q is described in terms of the crystal polarisation P,

P � 1
4π

� 1 
 1
ε � q

r2 (3.33)

where ε � εsε0.

From equation 3.33 individual displacements and electronic moments can be in-

ferred by summing the corresponding interaction over the whole lattice. With reference to

figure 3.4 it can be seen that the total energy introduced into the lattice by incorporation of

a defect, Ed , is the sum of each part of the multi-region approach,

Ed � E1 � E2 � r � � E3 � r1 ζ � � E4 � ζ � (3.34)
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where E1 is the energy of the defect in an unrelaxed non-polarisable lattice. The response

of the lattice is a function of either the atom coordinates in region I, r, or the displacement

vector in region II, ζ. E2 is the energy of region I due to the ion displacements, r. E3 is the

interaction between Region I and II and is a function of r and the displacement vector ζ.

E4 is the energy of region II due to the displacement vector ζ.

Since E4 is the sum of an infinite number of displacements it cannot be solved exactly

but is found by assuming displacements in region II are quasi-harmonic, such that

E4 � ζ � � 1
2

ζ � A � ζ (3.35)

where A is the force constant matrix. Substituting 3.35 into 3.34 and differentiating with

respect to ζ, the displacements in region II at equilibrium are,

∂E3 � r1 ζ �
∂ζ ???? ζ & ζe

�@
 A � ζe (3.36)

Figure 3.4: Representation of the two region approach for defect energy calculations. The

inner region, I, surrounds the defect and ion displacements are calculated explicitly. In

the outer region, IIb, displacements are calculated using the Mott-Littleton approximation.

Region IIa acts as a transition between Region I and IIb.
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thus from equation 3.35,

E4 � ζ � �@
 ζ
2

∂E3 � r1 ζ �
∂ζ ???? ζ & ζe

(3.37)

E4 can now be removed from equation 3.34 giving,

E � E1 � E2 � r � � E3 � r1 ζ � 
 ζ
2

∂E3 � r1 ζ �
∂ζ ???? ζ & ζe

(3.38)

The radii of regions I and IIa have a direct impact on the accuracy of the calculated

defect energy and also the computational effort required to reach a minimum solution.

Values are chosen such that further increases do not significantly alter the results obtained.

Table 3.1 details the region sizes used for host lattice simulations in chapters 4 and 5.

Table 3.1: Host lattice region I and II sizes used in simulations.

Lattice Region I (Å) Region IIa (Å)

NiF2 10 � 23 28 � 83
α-Al2O3 12 � 03 32 � 51
α-Cr2O3 12 � 57 33 � 96
α-Fe2O3 12 � 69 34 � 30

3.2 Derivation of Model Parameters

The derivation of model parameters is critical to any successful simulation. Some model

parameters can be derived from mathematical analysis, others are amenable to empirical

selection methods. Wherever possible experimental data is used to test the validity of the

resulting model. It is important to realise that while some parameters may have a physical

meaning (see section 2.2.2 on page 29) this does not have to be absolutely followed.

In the case of the interatomic potentials it is also important to remember that potentials

are meant to reproduce the total interaction of forces and are not limited to reproducing

the ionicity of the bond. Thus this technique is extended into somewhat more covalently

bonded systems [27,28].
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3.2.1 Non-empirical Methods

There are several methodologies for arriving at model parameters. These involve empirical

or non-empirical techniques. Quantum mechanical cluster calculations can be used to

determine parameters for a system [29]. Alternatively the electron gas method can be

used which treats the electron density around the ions as a Fermi-gas. Such an approach

is implemented in a series of programs by Harding and Harker [30]. To find parameters

of a given interaction using the electron gas method, the interaction between ions is

approximated by calculating the energies associated with the overlap of the electron gas

densities. This is achieved through the method of Wedepohl [31] and Gordon and Kim [32].

Several assumptions are made about the electron density in this approach and are detailed

by Gluston [33].

3.2.2 Empirical Methods

Neither of these approaches were used in this work due to the availability of good starting

potentials. As such, an empirical approach could be used to develop reliable potentials in

a self consistent manner.

Empirical potentials suffer one significant drawback, they only calculate a single point

on the potential surface. When defects are simulated, different interatomic separations

are encountered and the potential may not correctly reproduce the interaction in over an

extended separation range. This limitation can be overcome by fitting a potential to several

structures simultaneously. Here this “multi-fitting” approach is used to develop potentials

for the NiF2 system.
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3.2.3 Potential Listing for Bulk Lattice Systems

It is vital to the validity of a study that all potentials are self consistent with each other. Full

formal charge states are assumed (such that q is an integer), despite the evidence that

full charge models with a shell, as implemented here, consistently overestimate reaction

energies by approximately 40% [34]. Again this highlights why only relative energies for

processes are emphasised and discussed, not absolutes.

Two bulk lattice studies are contained within this work. The first, detailed in chapter 4,

studies the nickel fluoride lattice and the incorporation of extrinsic solutes in detail. Short-

range potentials were derived specifically for this work and are given in table 3.2. The

shell charge for fluorine was -1.3776 A e A and the spring constant was 24.36 eVÅ = 2. The

second study, detailed in chapter 5, investigates solution of extrinsic defects in α-Al2O3,

α-Cr2O3 and α-Fe2O3. Short-range potentials for these oxide systems were taken from

the literature and are detailed in table 3.3. The shell charge for oxygen was -2.04 A e A and

the spring constant was 6.3 eVÅ = 2.

3.3 Ionic Lattice Simulation Techniques

Aside from deriving a set of model parameters that correctly simulate the system under

study, there is the conceptual link between simulation and reality. The aim of these

simulations is to gain a quantitative description of various point defect processes that

are inaccessible by experimentation. Simulations can be used in a variety of ways as

described below. For the detailed practicalities of using each code the relevant manuals

are recommend.
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Table 3.2: Short-range potential parameters used to model defects in the host NiF2 lattice.

Species Ionic Radii A (eV) ρ (Å) C (eVÅ6)

[35] (Å)

F = -F = 1 � 33 1317 � 5 0 � 2753 13 � 8
Li > -F = 0 � 67 575 � 8 0 � 2553 0 � 0
Na > -F = 1 � 02 1497 � 45 0 � 2589 0 � 0
Ag > -F = 1 � 15 1696 � 2 0 � 2699 0 � 0
K > -F = 1 � 38 1701 � 31 0 � 2963 13 � 7

Rb > -F = 1 � 52 1267 � 9 0 � 3219 21 � 4
Cs > -F = 1 � 67 1758 � 8 0 � 3279 32 � 1
Ni2 > -F = 0 � 69 907 � 9 0 � 2816 0 � 0
Mg2 > -F = 0 � 72 841 � 3 0 � 2831 0 � 0
Co2 > -F = 0 � 745 917 � 2 0 � 2856 0 � 0
Fe2 > -F = 0 � 78 934 � 9 0 � 2879 0 � 0
Mn2 > -F = 0 � 83 1000 � 7 0 � 2926 0 � 0
Cd2 > -F = 0 � 95 1057 � 6 0 � 3059 10 � 0
Ca2 > -F = 1 � 00 1534 � 3 0 � 2893 0 � 0
Ba2 > -F = 1 � 35 1746 � 9 0 � 3237 16 � 7
Al3 > -F = 0 � 535 1409 � 9 0 � 2577 0 � 0
Cr3 > -F = 0 � 615 1124 � 7 0 � 2706 0 � 0
Fe3 > -F = 0 � 645 1246 � 2 0 � 2788 0 � 0
Mo3 > -F = 0 � 69 1436 � 2 0 � 2864 12 � 6
Sc3 > -F = 0 � 745 1364 � 7 0 � 2953 0 � 0
Y3 > -F = 0 � 9 2146 � 3 0 � 2985 12 � 4
La3 > -F = 1 � 032 1384 � 9 0 � 3302 16 � 0
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Table 3.3: Short-range potential parameters used to model host corundum oxides lattices

(α-Al2O3, α-Cr2O3 and α-Fe2O3) and cation dopants.

Species ionic Radii A (eV) ρ (Å) C (eVÅ6) Reference

[35] (Å)

O2 = -O2 = 1 � 40 9547 � 96 0 � 2192 32 � 0 [7,14,16,36–39]

Mg2 > -O2 = 0 � 72 1248 � 38 0 � 299969 0 � 0 [37]

Co2 > -O2 = 0 � 745 778 � 02 0 � 3301 0 � 0 [39]

Fe2 > -O2 = 0 � 78 853 � 5 0 � 3288 0 � 0 [14]

Cd2 > -O2 = 0 � 95 951 � 88 0 � 34856 13 � 91 [36]

Ca2 > -O2 = 1 � 00 784 � 38 0 � 36356 0 � 0 [36]
Sr2 > -O2 = 1 � 18 682 � 17 0 � 3945 0 � 0 [38]

Ba2 > -O2 = 1 � 35 905 � 7 0 � 3976 0 � 0 [36]

Al3 > -O2 = 0 � 535 1120 � 04 0 � 3125 0 � 0 [38]
Cr3 > -O2 = 0 � 615 1313 � 18 0 � 3165 0 � 0 [38]

Ga3 > -O2 = 0 � 620 1281 � 75 0 � 3175 0 � 0 [38]

Fe3 > -O2 = 0 � 645 1414 � 60 0 � 3128 0 � 0 [36]

Sc3 > -O2 = 0 � 745 1575 � 85 0 � 3211 0 � 0 [36]

In3 > -O2 = 0 � 800 1495 � 65 0 � 3327 4 � 33 [38]

Yb3 > -O2 = 0 � 868 1649 � 80 0 � 3386 16 � 57 [16]

Y3 > -O2 = 0 � 900 1766 � 4 0 � 33849 19 � 43 [36]

Sm3 > -O2 = 0 � 958 1944 � 44 0 � 3414 21 � 49 [16]

La3 > -O2 = 1 � 032 2088 � 89 0 � 3460 23 � 25 [7]

Rh4 > -O2 = 0 � 600 1204 � 64 0 � 3404 0 � 0 [38]

Ti4 > -O2 = 0 � 605 1210 � 04 0 � 3427 0 � 0 [38]

Ru4 > -O2 = 0 � 620 1215 � 78 0 � 3441 0 � 0 [16]
Mo4 > -O2 = 0 � 650 1223 � 97 0 � 347 0 � 0 [16]

Sn4 > -O2 = 0 � 790 1414 � 32 0 � 3479 13 � 6 [16]

Pu4 > -O2 = 0 � 860 1682 � 08 0 � 3542 0 � 0 [38]
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3.3.1 Isolated Point Defect Simulations

In point defect chemistry there are two basic types of defect: vacancy and interstitial. More

complex defects can be constructed from these. For example, a substitutional defect can

be formed by creating a vacancy and then introducing an extrinsic interstitial into that same

site. Any defect will introduce a level of strain into the lattice and the simulation will report

this as a defect energy. When a reported energy refers to a single defect this is considered

an isolated defect result. These energies can be used to evaluate reaction energies where

there is no defect-defect interaction expected. However, simulations are not restricted to

this scenario only.

3.3.2 Point Defect Cluster Simulations

It is possible to define several defects in one simulation. A single energy will be reported,

however, in this case the energy is considered a clustered result. In this way the interaction

of defects with each other is accounted for. Cluster formation can lead to a substantial

reduction in the energy depending on geometry and the ion radii. This reduction in energy

is called the binding energy, Ebin, which can indicate if strong defect associations will

form in systems at appropriate temperatures. Ebin is defined as the difference in energy

between the sum of the formation energies of the clusters components when they are

spatially isolated, ∑Ede f ects, and the formation energy of the cluster, Ecluster,

Ebin � ∑Ede f ects 
 Ecluster (3.39)

Thus, a positive binding energy indicates that a given cluster is stable. There are two

components to the binding energy [40]. Firstly the coulombic interaction which is a con-

sequence of oppositely charged defects acting to reduce the overall charge disruption in

the lattice. Secondly, the lattice relaxation in which the ions move to a more favourable
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geometry. For example, a vacancy close to an over-sized solute cation will reduce the

overall strain in the lattice.

While it is generally found that the cooperative relaxation is only significant when

defects are in close proximity, there may be many complex arrangements for the neigh-

bouring defects, each with different energies. It is important to consider all the possible

geometries so that the lowest energy (most favourable) can be predicted. This is indicated

by the largest overall binding energy. The number and complexity of the clusters is purely

a function of system crystallography.

Differentiating the many clusters can become difficult for a complex system, thus

a consistent approach for naming clusters has been devised. The various solution ge-

ometries in chapters 4 and 5 arise form the arrangement of the substitutional defects

in the 1st , 2nd , 3rd and occasionally 4th or 5th neighbour sites around a compensating

defect. Cluster designations are assigned based on the near neighbour position of each

of the substitutional defects. Thus, a cluster containing 4 defects (1 compensating and

3 substitutional) of which two are in 1st neighbour positions and one in a 3rd neighbour

position would be called 1-1-3. If there are several clusters with a 1-1-3 arrangement then

they are differentiated by an alphabetical character. Thus: 1-1-3a, 1-1-3b, 1-1-3c and so

on. Explicit coordinates of each site in the cluster are provided in the text.

While clustering is an important issue, the analysis required to fully resolve its com-

plexity is prohibitive. For this work a simpler limiting case is used which introduced the

following issues:B The defect cluster energetics are wholly represented by the single lowest defect

cluster energy configuration. As such, the contribution to the configurational entropy

from the cluster configuration is ignored.B Thus, solution reactions for the clustered case are only valid in a highly limiting case.
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A fully comprehensive treatment would consider the equilibrium between the isolated

and clustered cases as a means to determine the partition between the isolated and

clustered defect concentrations. However, this is beyond the scope of this thesis and

solution limits based on the defect cluster energies are not entirely rigorous.

3.3.3 Migration Saddle Point Energy Simulations

The bulk transport properties of intrinsic defects is also of interest as it is indicative of

passivation layer stability. The simulation code can be used to calculate saddle point

energies for migration pathways. Assuming that migration occurs primarily via a thermally

activated hopping process, the difference between the energy of the migrating defect at

the saddle point and an isolated defect represents the energy barrier to migration and

is related to the activation energy. The activation energy is related to transport in the

lattice as discussed in section 1.3.2. The location of the saddle point is established by

compiling contour plots of defect energies between the start and end point of the migration.

Assuming the migrating defect will follow the lowest energy pathway, this type of plot allows

the migration path and saddle point to be identified.

In contour plots higher energies are red shades and lower energies are blue shades.

Imagining this to form a three dimensional topographical surface, for a plane parallel to the

migration path then the surface will look like a valley and the valley floor will describe the

migration path. For a plane perpendicular to the migration path the surface will look like a

sinkhole and the bottom of the sinkhole will describe a single point on the migration path.

Several planes may be required to accurately locate the saddle point. Examples for these

contour plots can bee seen in section 4.4.3.

In the simulations a lattice geometry is defined which represents the expected con-

figuration at some point during the migration hop. The migrating ion is fixed and the
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surrounding lattice relaxed. In figure 3.5 the schematic represents the configuration used

to locate a saddle point for a vacancy migrating in a (001) direction in NiF2. Fixed defects

are rastered in a plane perpendicular to the expected path.

Since the number of calculations required for a single contour plot may be several

hundred, a smaller region I size is used to decrease the computational load. Full region

I size calculations are then made along the predicted migration path, the results of which

can be plotted as an energy barrier graph. Examples for these energy barrier graphs can

be seen in section 4.4.3. It has been found that the smaller region I size calculations

give the same spatial location of the saddle point while the absolute values of the defect

energies may differ from full region I size calculations.

Figure 3.5: Representation of the technique used to calculate contour plot energies. This

example is for a nickel vacancy migration in the [001] direction.

Migration hops can be classified by their ability to move defects through the lattice.

This is dependant on what type of secondary hops are available to a defect after a primary
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hop. Thus there are several possible modes of transport:

mode 1 The secondary hop is of the same type as the primary hop but results in the defect

moving to a lattice site which has not previously been visited.

mode 2 The secondary hop is of the same type as the primary hop but can only result in the

defect moving back to a site which was previously visited (e.g. the site from which

the primary hop started).

mode 3 The secondary hop is of a different type to the primary hop and must by definition

move to a lattice site which has not been previously visited.

mode 4 The secondary hop is of a different type to the primary hop but can only move the

ion back to a start site that was previously visited.

A defect can only move large distances through the lattice in mode 1 or mode 3. A

defect cannot move large distances through the lattice by mode 2 or mode 4. As such,

mode 1 and 3 allow ‘continuous‘ migration through the lattice, and modes 2 and 4 do not.

Thus, modes 2 and 4 may be considered ‘discontinuous‘.
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