
Chapter 3

Methodology

3.1 Introduction

All simulations carried out in this work are based on the classical Born model

of ionic solids [99] in which the lattice is constructed from a periodic array

of charged spherical ions. The interaction between ions is partitioned into

two components. The first is a long range electrostatic interaction (ΦLR)

and the second is a short range interaction (ΦSR) that acts mainly as a

repulsive force that prevents two oppositely charged ions from colliding to

form a singularity but it may also contain an attractive component. These

combine as per Equation 3.1 to contribute to the total energy (Φ). Figure

3.1 shows a graphical representation of the short range, long range and total

interaction energy between a pair of ions oppositely charged ions.
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Figure 3.1: Graph of the interaction energy between two oppositely charged
ions showing the contribution from the short range interaction (Blue), the
long range Coulombic interaction (Black) and the total interaction (Red).

Φ = ΦSR + ΦLR (3.1)

The general interaction between all the ions in a solid containing many ions

can be very complicated but it can be written simply as a series of summa-

tions involving increasing numbers of ions as per equation 3.2 i.e. two-body,

three-body and n-body terms.
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Φ = Φ0 +
∑
ij

Φij +
∑
ijk

Φijk +
∑
ijkl

Φijkl + . . . (3.2)

where ij represents interactions between pairs of ions, ijk triplets, and higher

order terms. Φ0 is a function of the local environment and defines the zero en-

ergy. It is generally ignored as differences in energy are usually the important

factor.

In an ionic solid (including all of the compositions studied) the interaction

between ion pairs dominate and all the other terms can be omitted. This is

known as the pair-wise approximation and is used throughout this work.

3.2 Atomic interactions Using Pair Potentials

The Long Range Interaction

By simplifying all the interactions to include only the pairwise, the long

range interaction can be defined relatively simply. As mentioned earlier, it is

essentially the electrostatic interaction between the ion pair and as such can

either be attractive, in the case of oppositely charged ions, or repulsive if they

are of like charge. Equation 3.3 shows the long range interaction energy(ΦLR)

of two ions (ion i and ion j) with charges qi and qj at a separation of rij (ε0

is the permittivity of free space).

ΦLR(rij) =
qiqj

4πε0rij

(3.3)
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While the definition of the long range interaction is simple, calculating it

explicitly would be computationally expensive due to the slow rate at which

contributions to the interaction energy fall off with distance
(
i.e. 1

rij

)
. This

means that for each ion, a huge number of interactions must be considered

in order to compute this interaction with any accuracy. Fortunately, Ewald

[100] developed an approximate method of calculating this summation which

involves splitting the calculation into a short range real space component and

a long range reciprocal space component [101]. The mathematics behind this

are quite in depth and beyond the scope of this thesis. The result is that this

allows the interaction to be calculated much more rapidly. This method is

implemented in both molecular statics codes used during the course of this

work (CASCADE [102] and GULP [103]). A simplified explanation of this

method is given in Appendix B of “Introduction to Solid State Physics” by

Charles Kittel [101].

3.2.1 The Short Range Interaction

Whereas the idea behind the long range interaction is very simple to under-

stand, the origins of the short range interaction are more complicated. It

is important to understand where this term originates from and how it is

described as it is this contribution to the interaction that has the greatest

effect on the accuracy of the simulations run in this study.

The short range interaction can be either completely repulsive or have a

combination of repulsive and attractive components dependent on the ions

that are interacting. The repulsive interaction originates from the overlap
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of the electron clouds of both atoms at very small ionic separations. This

is partly due to the Pauli exclusion principal [104], with the rest of the

contribution due to nuclear-nuclear interactions. The generalised version

of the Pauli exclusion principal states that no two fermions can share the

same quantum state. When the electron clouds overlap the Pauli exclusion

principal forces the ground state charge distribution of the electrons to have

a higher energy. This increase in energy is manifested as a repulsive force

that increases in strength as the ions are moved closer together.

At slightly larger separations, an overall small attractive force can exist which

is generally known as the van der Waals - London interaction. This attraction

is due to the spontaneous formation of instantaneous dipoles on each of the

interacting ions. London was able to determine a general expression for

this interaction by describing dipole formation as a correlated motion of the

electrons in both atoms [105–107]. London found that for the case of pair of

identical ions i and j, this force varies as a function of r−6
ij where rij is the

separation of the ions. Clearly this force will be stronger between polarisable

ions.

The short range interaction is clearly complex and consequently it is possible

to approximate it using a number of functional forms. The potentials used

in this study and some of the other possible approximations will now be

discussed.
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Potential Forms

The earliest attempt to couple a short range repulsive potential with the

Long range Coulomb interaction was attempted by Born and Landé [108]

and the short range component was described by the following equation.

Φij =
b

rn
ij

(3.4)

where b and n are variables chosen to reproduce the equilibrium interionic

separation; early work took n = 9. This model was later expanded when

quantum mechanical calculations proved that, while it was a useful approx-

imation, it was not correct for all materials. With this in mind, Born and

Mayer [109] developed a short range potential of the form:

Φij = Ae−
rij
ρ (3.5)

where A and ρ are variable parameters. So far, none of the potentials

have considered the van der Waals interaction. The Lennard-Jones poten-

tial [110] combines the repulsive form from Equation 3.4 with an attractive

van der Waals potential using the r−6
ij dependence determined by London.

The strength of this effect can be adjusted by varying the parameter C.

Φij =
b

rn
ij

− C

r6
ij

(3.6)

In modern calculations n is normally 12. This potential is often used to

model non-bonded interactions such as those in liquids and gasses. If the
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(
b

rn
ij

)
term from the Lennard-Jones potential is removed and replaced with

the more flexible two parameter exponential version from the Born-Mayer

potential (Equation 3.5) then the result is the Buckingham potential [111].

Φij = Ae−
rij
ρ − C

r6
ij

(3.7)

where, as before, A, ρ and C are parameters which are varied in order to

reproduce experimental data. This is the potential form employed for many

of the interatomic potentials used in this study although, due to the obvious

case when C=0, some of the potentials used are of the Born-Mayer type. It

should be noted that the short range interaction shown in figure 3.1 used

the Buckingham potential model. Tables listing the Buckingham potential

parameters used in this study are given in the respective chapters to avoid

the confusion of which potentials are used in which circumstance.

Due to the short range nature of these potentials, a cut-off value beyond

which they are no longer evaluated is used. The purpose of this is to reduce

computation times since beyond a few lattice spacings, the contribution to the

interaction is negligible (see figure 3.1). The value of this cut-off is normally

determined by running a series of identical calculations with increasing values

of the short range cut-off and plotting this against lattice energy. When this

value reaches a plateau, further increases to the short range cut-off do not

contribute to the energy and thus the cut-off value is chosen.
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3.2.2 Derivation of Short Range Potentials

The potentials in chapter 4 were modified from Minervini et al. [112] in order

to more accurately reproduce the lattice parameters of the pyrochlore and the

δ-phase (see chapter 4). This was performed by a purely empirical approach.

Empirical potential fitting is an iterative process whereby the potential pa-

rameters are varied in order to minimise the discrepancies between the sim-

ulation result and experimental data. In this study, only the parameters for

chapter 4 were newly derived, and each potential was fitted to its basic oxide

and any pyrochlore or δ-phase compound for which experimental data was

available. In this system efforts were made to make sure that the sum of the

deviations from the experimental lattice parameter was less than 1%.

3.3 Ionic Polarisability

The response of an ion’s electric charge density to an electric field is simu-

lated via the shell model of Dick and Overhauser [113] (note: only for those

systems where it is required and feasible to implement i.e. not for molecular

dynamics). The shell model is an addition to the Born model of the lattice

that provides a method for predicting the effects of ionic polarisation. The

addition of shells to ions in the lattice increases the computational time and

memory requirements for the simulation as it adds many-body terms to the

calculation. This means that it is not reasonable (and nor is it required) to

add shells to all species. In order to decide whether or not an ion requires
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Figure 3.2: Graphical representation of the shell model showing a) no dis-
placement, unpolarised b) displacement of the core from the centre, polari-
sation. In both figures, the red sphere represents a core with charge +Xe,
the surrounding hemisphere represents the massless shell with charge −Y e
and the spring is representative of the isotropic force constant k. In b) the
light blue sphere represents a negatively charged ion.

a shell, the electronic polarisability on the ion must be taken into account.

Generally it is found that shells are required for anions, O2= for example,

but not necessarily for cations, e.g. Mo4+.

The Dick and Overhauser shell model for ionic polarisability [113] is used

throughout. This model describes an ion as having a central core with charge

Xe, representing the nucleus, and a shell of charge Y e, representing the

electrons. These two charges are balanced so that the sum of (X + Y ) e is

the same as the valence state of the ion. Generally the core is given a slightly

positive charge and the shell is negative to balance this. These are coupled

together via a harmonic force constant k (see figure 3.2). This allows the shell

to move with respect to the core, thus simulating a dielectric polarisation.

Using this description, the polarisability of an isolated ion, α, is given by

equation 3.8:
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α =
1

4πε0

(
Y

2

k

)
(3.8)

Where Y is the charge on the shell, α is the polarisability (Å3), k is the

harmonic force constant (eVÅ−2)
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Although no new shell model parameters were defined during the course of

this study, it is still important to understand how such parameters were

developed. Shell parameters are added to reproduce polarisability and there-

fore are fitted against the dielectric and elastic properties of a crystal. Since

the polarisability has a particularly strong influence on the high frequency

dielectric constant, it is generally the main observable parameter used to fit

X, Y and k.

This model allows the coupling of the short range interaction to the polar-

isability and in this work it is assumed that (where present) short range

interactions only interact between shells. This increases the complexity of

the model as the position of the cores is now affected by a many-body in-

teraction based on the electrostatic interactions with the shells and cores

within the system, the two-body interactions of the shells and the force con-

stant k. This added complexity allows the simulation of systems with greater

accuracy than via a rigid-ion model.

This implementation of the shell model is limited as it cannot reproduce ma-

terials that violate the Cauchy relationship [114]. This relationship indicates

that (for cubic crystals) the elastic constants c12 and c44 are equal. Unfor-

tunately real materials can violate this and these two values can be quite

different. This can be fixed to allow for Cauchy violations where c12 < c44 by

assigning a real radius to the shell and allowing it to change depending on the

conditions, this model is termed the breathing shell [115]. Further modifica-

tions are also possible, for example, the elliptical breathing shell model [116]

in which the shell can distort elliptically as well as change radius. This allows
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deviations of the form c12 > c44. Unfortunately, these breathing shell param-

eters are notoriously difficult to parameterise and it has not been possible to

implement here.

3.4 Static Calculations

3.4.1 Energy Minimisation

As the potential model used in the simulations is an approximation to real-

ity, the force field predicted by the model does not exactly reproduce that

determined by experiment. This means that even though the ions are placed

in the ideal configuration as dictated by experiment, they may not be in the

lowest energy state with respect to the approximated interionic potentials.

Before a defect calculation is run or even the lattice energy is determined, it

is important to allow the ions to relax to their lowest energy configuration

with respect to the potentials used (otherwise any subsequent changes to

ion positions may include a term associated with the movement of ions to

their equilibrium positions). Obviously great care is taken to ensure that dis-

crepancies with experimental data are kept to a minimum during the fitting

process. This is done to ensure the greatest possible agreement between the

simulated lattice and reality.

The simulation codes used minimise the lattice iteratively. During this pro-

cess, the forces on each ion are calculated and then the ion is shifted slightly

in proportion to the force acting on it. This continues until the forces acting
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on all the ions are zero.

It is possible to minimise the lattice at a constant volume or a constant

pressure. Under constant volume conditions, the edges of the cell are held

fixed and the ions can only move by varying their locations within the cell

relative to the strains experience by each ion in the cell. Under constant

pressure minimisation, the unit cell dimensions are also allowed to change

such that the strains on the cell are minimised as well as those for the ions

within it (clearly, in general this affords a more realistic simulation). As there

are fewer degrees of freedom available for constant volume calculations, they

take less time and as such many of the early energy minimisation calculations

used this method. Due to advances in computer technology over the years,

this optimisation is no longer required and all of the energy minimisation

calculations in this thesis were performed under constant pressure conditions

(interestingly many quantum mechanical simulations still use the constant

volume approximation).

As mentioned earlier, the aim of the minimisation process is:

F =
∂UL

∂r
= 0 (3.9)

where F is the force on the system, UL is the lattice energy and r is the

coordinate system.
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If the lattice energy of a system of N ions with coordinates, r, is UL(r) then

the lattice energy at a new set of coordinates r′ is:

UL(r′) = UL(r) + ~gT · ~δ +
1

2
~δT ·W · ~δ (3.10)

where ~δ is a generalised strain vector with 3N displacement components, ~δr,

and 6 bulk strain components, ~δε;

~δ =
(

~δr, ~δε
)

(3.11)

~g corresponds to the first derivatives of the lattice energy with respect to

displacement and strain;

~g =

(
∂UL

∂r
,
∂UL

∂ε

)
(3.12)

and W is a matrix that contains the corresponding second derivatives;

W =

∂2UL

∂r∂r
∂2UL

∂r∂ε

∂2UL

∂ε∂r
∂2UL

∂ε∂ε

 (3.13)

the new coordinates are related to the old coordinates by

r′ = ∆ε · (r + δr) (3.14)
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where ∆ε is the Voight matrix representation of ~∂ε

∆ε = ~∂ε =


δε1

1
2
δε6

1
2
δε5

1
2
δε6 δε2

1
2
δε4

1
2
δε5

1
2
δε4 δε3

 (3.15)

In the simulation codes used, the simulation iterates closer and closer to

the goal of zero force on the ions until the energy change is less than a

predetermined value.

3.4.2 Defect Calculations

Once the lattice energy has been minimised with respect to ion positions,

defects can be introduced, for example an ion can be removed to create a

vacancy. The lattice will respond to the presence of this defect by further

relaxation around this defect and it is assumed that the majority of this re-

laxation occurs close to the defect and that the extent of relaxation decreases

with distance. This makes it reasonable to split the lattice up into a series

of different concentric spherical regions in which progressively more approx-

imate methods are used to calculate the lattice response to the defect with

increasing distance (figure 3.3 shows this).

The region containing and immediately surrounding the defect is called Re-

gion I, this extends from the centre of the defect site to a predetermined

radius. In this region, the interactions are calculated explicitly with the ions

being allowed to relax to zero strain. Beyond this boundary, the lattice relax-
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Figure 3.3: Graphical representation of the multi region approach for defect
energy calculations. The defect(s) are coloured black, region I is red and
region IIa is yellow. Region IIb is represented by the grey background and
extends to infinity from the outside surface of region IIa (pale yellow).

ation of the defect is much smaller and as such, a more approximate method

can be used. This outer region, termed region II, extends from the edge of

this region to infinity.

Region II is further subdivided into two regions, IIa and IIb, where region

IIa acts as a buffer layer between region I and region IIb. In region IIa, ion

displacements are inferred from the Mott-Littleton approximation [117] but

interactions with region I are calculated by explicit summation. This means

that region IIa must always be at least the size of region I plus the short

range cut-off, such that the ions at the edge of region I can interact with the
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ions in region IIa. The response of the ions in region IIa, due to a defect at a

distance, r, is due to the polarisation, P , calculated using the Mott-Littleton

approximation [117]. For large distances

P =
q~r

4πr3

(
1− 1

ε

)
(3.16)

where q is the charge of the defect and ε is the static dielectric constant of

the crystal.

The total energy introduced to the lattice via the incorporation of a defect,

Ed, is the sum of the energies in each region

Ed = EI(~r) + EI−II(~r, ~ζ) + EII(~ζ) (3.17)

where EI is the energy due to the interactions of the ions in region I with

their displacements given by the displacement vector ~r; EII is the energy of

region II with an ion displacement vector ~ζ; and EI−II is the energy due to

the interaction between region I and II ions. It is not possible to calculate this

explicitly since region II extends to infinity and thus would require the sum

of an infinite number of displacements. However, since the displacements in

region II are very small a quasi harmonic approximations is valid such that:

EII =
1

2
~ζ ·A · ~ζ (3.18)

where A is the force constant matrix. Substituting equation 3.18 into 3.17

and differentiating with respect to ~ζ, the equilibrium displacements in region
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II are given by:

δE

δζ
=

δEI−II(~r, ~ζ)

δ~ζ

∣∣∣∣
~ζ=~ζe

+ A~ζe (3.19)

where ~ζe is the equilibrium value of ~ζ corresponding to ~r. When this is

substituted into equation 3.18 and then back into equation 3.17, the defect

energy dependence of the energy of region II is removed as shown in Equation

3.20

Ed = EI(~r) + EI−II(~r, ~ζ)− 1

2

δEI−II(~r, ~ζ)

δ~ζ

∣∣∣∣
~ζ=~ζe

· ~ζe
~ζe (3.20)

3.5 Molecular Dynamics Calculations

3.5.1 Background

Molecular dynamics simulations are fundamentally different from the energy

minimisation process discussed previously. Energy minimisation processes

relax the system to a local energy minimum with respect to the interatomic

potentials used. While valuable, it cannot give any information about how

such a system can vary as a function of time. This is where molecular dy-

namics (MD) becomes useful.

MD is a computer simulation technique where a set of interacting ions is

allowed to evolve in time by integrating the laws of motion. In a MD sim-

ulation containing N ions, each ion, i, is assumed to obey Newton’s laws of

motion and, most importantly, Newton’s first law such that:

Fi = miai (3.21)
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where Fi is the force act on each individual ion due to interactions with all the

other ions, mi is the mass of that ion and ai is equal to d2ri

dt2
(the acceleration

of that ion).

There are many similarities between MD and the static calculations described

previously in that the forces between the ions are based on a pair potential

approximation where the interaction energy, Φ, for any two ions, i and j,

with positions, ri and rj, can be expressed in the form:

Φ(r) =
∑

j

∑
j>i

φ(|ri − rj|) (3.22)

where φ is a combination of long range and short range interactions as per

Φ in Equation 3.1 and the j > i term in the second summation means each

interaction is only considered once.

3.5.2 Time and System Size Limits

The size of the simulation is limited by the amount of memory available to

the computer and while technically there is no limit to the amount of time

that can be simulated, a practical limit is imposed by the short time-steps

required for an accurate simulation (on the order of 10−15 s). Simulations

of metal systems (where only 1 or 2 types of atom exist and only very short

range forces need to be considered) have been made in which of millions of

atoms have been simulated for nanoseconds. Simulations of ceramic systems

where the short range interaction acts over 5-10 Å and the even longer range

Coulombic interaction needs to be considered, make it necessary to limit
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the system sizes in order to simulate any meaningful period of time. The

simulations run during the course of this work consist of individual runs

containing about 98000 ions that were simulated for 6 ps.

3.5.3 Potentials Models for Molecular Dynamics Sim-

ulations

Short Range Interactions

While the Buckingham potential form works well for simulations reasonably

near equilibrium conditions, it encounters problems with simulations where

ions are likely to reach very small separations, such as simulations of collision

cascade events. This is due to the fact that at very small separations, the

Buckingham potential (with a non zero C-term) tends towards −∞ (see

figure 3.4). Even for Born-Mayer type potentials, the short range interaction

is overly attractive at short range and therefore at very small separations

a screened Coulomb potential (in this case the Ziegler-Biersack-Littmark or

ZBL potential) was used [118]. In order for there to be a smooth transition

between the short range potential and the ZBL potential, a spline was used

to connect these such that the first and second derivatives of both potentials
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Figure 3.4: Graph showing the tendency for the Buckingham potential to
tend to −∞ at small ion separations when using a non-zero C-term.

were preserved. The general breakdown of the interactions is:

Φ(r) =



ZBL r < r0;

g(r) r0 6 r < r1;

Ae−
r
ρ − C

r6 + V (r) r1 6 r < r2;

V (r) r > r2.

(3.23)

where V(r) is the Coulombic interaction and g(r) is the splining function

which is given by

g(r) = e(f1+f2r+f3r2+f3
4 r+f5r4) (3.24)

It should be noted that for cation-cation interactions no short range Buck-
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ingham potential is used, therefore the short range term in equation 3.23

reduces to just the repulsive Coulomb interaction between r1 and r2 and this

is then splined to the ZBL potential.

Table 3.1 shows the parameters used to spline the short range interaction to

the ZBL potential, table 3.2 gives the radial cut-offs for all the species in the

system. The Buckingham potential parameters used in the MD simulations

will be reorted in chapter 6. These parameters were previously used to study

collision cascades in spinel [119].

Table 3.1: The parameters for the spline to the ZBL interaction.

f1 f2 f3 f4 f5 f6

Mg-Mg 14.4507 -47.7977 122.4210 -175.9999 125.1304 -34.1480
Mg-Al 10.6531 -17.0984 27.9501 -36.8467 28.3526 -8.5504
Mg-O 11.0765 -31.3878 118.9207 -302.6137 367.5647 -167.4741
Al-Al 10.3578 -112.8183 9.4511 -1.2318 -1.0544 0.1604
Al-O 11.0284 -28.5714 95.3424 -217.4885 242.7988 -107.0122
O-O 9.9306 -17.4669 25.3341 -19.0023 6.6210 -0.8289

Table 3.2: Cut-off parameters used in MD simulations of pure and Al doped
MgO (r2 was 7.2Å for all interactions).

r0 (Å) r1 (Å)
Mg-Mg 0.5 1.05
Mg-Al 0.5 1.05
Mg-O 0.15 0.80
Al-Al 0.3 1.05
Al-O 0.15 0.8
O-O 0.2 1.05
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Long Range Interactions

While many MD simulation packages use the Ewald sum (like the energy min-

imisation packages mentioned earlier) to calculate the long range Coulom-

bic interactions, the MD code used in this thesis employs the Distributed

Parallel version of the fast Multipole Tree Algorithm (DPMTA) library by

Rankin [120]. This method uses multipole expansions to reduce the scaling

from a system containing N particles from N2 to N log N , or for special

situations, N [120]. A mathematical breakdown of how this method works

will not be given here as it is beyond the scope of this thesis and detailed

information can be found in [120] and [121]. A simple but brief introduction

into the workings of the fast multipole algorithm is also given in [122].

Multipole expansions take advantage of the fact that at sufficiently great

distances a group of charged particles can be represented as a single multipole

expansion. As shown in figure 3.5, the many individual interactions between

a single distant particle with all the particles in a group may be represented

by a single interaction of the distant particle with the multipole expansion

for the entire group.

Even though this method is only exact in a system containing an infinite

number of particles, it is known to converge quite rapidly [120]. This allows

these expansions to be truncated at a relatively small size whilst still main-

taining a small error. Interactions between ions with small separations are

calculated directly and it is for large separations that multipole expansions

replace the direct calculation.
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A

B

Figure 3.5: A multipole representation of a group of particles (A) interacting
with a distant particle (B). Reproduced from [120].

3.5.4 Time Integration Algorithm

The core of any MD code is the time integration algorithm. This is required

to integrate the equations of motion for the interacting ions and follow their

paths. The solutions to this algorithm are calculated using finite difference

methods in which time exists in discrete increments. By knowing the posi-

tions and some of the derivatives (see equations 3.25 and 3.26) at time, t,

it is possible to integrate these to calculate the values at a time t + ∆t. By

making ∆t small enough, the error is reduced, but never completely removed

(the Verlet algorithm, for example, has an error associated with the timestep

proportional to ∆t4). Another source of error is due to the rounding error

associated with the finite accuracy of the processor. In this work, 64 bit

representations of the properties are used in order to minimise these errors.

In the current implementation of the simulation code, the timestep is a vari-

able and scales with respect to the fastest moving ion in the system. This

allows a much smaller timestep (sometimes as low as 0.08 fs) to be used at

the start of the simulation so that accuracy is maintained when a few ions
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have very high kinetic energies (peaking at 1 or 2 keV), whilst allowing the

timestep to grow (to a maximum of 1.05 fs) once the ions in the system slow

down. Consequently the simulation completes faster and time is not wasted

calculating more timesteps than necessary.

Verlet Algorithm

The Verlet algorithm [123] is one of the most common integration algorithms

used for MD simulations. The basic concept is to construct two, third or-

der Taylor series expansions for the positions, r(t), one forward and one

backwards in time. Calling the velocity v, the acceleration a, and the third

derivatives of r with respect to t, b gives:

r(t + ∆t) = r(t) + v(t)∆t +
1

2
a(t)∆t2 +

1

6
b(t)∆t3 + O(∆t4) (3.25)

r(t−∆t) = r(t)− v(t)∆t +
1

2
a(t)∆t2 − 1

6
b(t)∆t3 + O(∆t4) (3.26)

These equations are then added together and rearranged to yield:

r(t + ∆t) = 2r(t)− r(t−∆t) + a(t)∆t2 + O(∆t4) (3.27)

which is the basic form of the Verlet equation. Since Newtonian mechanics

are assumed, a(t) is just the force divided by the mass and the force is a

function of the ion positions r(t):

a(t) = −
(
∇Ψ(r(t))

m

)
(3.28)
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The popularity of this algorithm is due to the simplicity of implementation,

its accuracy and stability. One of the problems is that it is often necessary

to generate ion velocities, this information is often subsequently inferred in

order to calculate the kinetic energy of the ions. In fact, this is commonly

used to test that conservation of energy is being maintained as this is a good

indication that the step size is small enough.

While it is possible to calculate the velocities using

v(t) =
r(t + ∆t)− r(t−∆t)

2∆t
(3.29)

the errors as a function of step size are significantly larger than those for

positions (proportional to ∆t2 rather than ∆t4). In order to deal with this,

a better implementation of this algorithm has been developed which is used

in this work and is termed the velocity-Verlet algorithm. In this method, the

positions, accelerations and velocities are calculated at time t+∆t using the

following equations:

r(t + ∆t) = r(t) + v(t)∆t +
1

2
a(t)∆t2 (3.30)

v

(
t +

∆t

2

)
= v(t) +

1

2
a(t)∆t (3.31)

a(t) = −
(
∇Ψ(r(t + ∆t))

m

)
(3.32)

v (t + ∆t) = v

(
t +

∆t

2

)
+

1

2
a(t + ∆t)∆t (3.33)
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3.6 Simulation Codes Used

Three simulation codes were used in total, two static energy minimisation

codes and one molecular dynamics code. The energy minimisation codes

were; CASCADE (Cray Automated System for the CAlculation of Defect

Energies) [102] and GULP (General Utility Lattice Program) [103]. CAS-

CADE was developed at the Daresbury Laboratory for the CRAY computer

and was based on HADES (Harwell Automatic Defect Examination System)

code [124]. The molecular Dynamics code is called LBOMD [125] and was

developed at Loughborough University.




