Chapter 2

Atomistic Simulation

Despite the steady increase in computer power, we are not yet able to model all
physical processes. For example, it is still not possible to tackle a large system
of atoms (i.e. > 10%) quantum mechanically, except under specific circumstances,
so methods employing inter atomic potentials are still very useful. For the same
purpose of extending capabilities, cellular automata methods based on atomistic
simulation are being used today [29].

The first UO, defect calculations using the Born [32] model of the ionic solid
were performed by Tharmalingam [33] in the Materials Department of Imperial
College. He used a method by Boswarva and Lidiard [34] in which the crystal was
divided into two regions. Region I contained the defect, and the positions of its ions
were minimized to zero force (see section 2.2). Polarisation of region II in response
to the defect in region I was calculated using the Mott-Littleton approximation
(equation 2.43).

The problem Tharmalingam encountered was that he had to correct his calcula-

tions by a 7% factor (derived from NaCl calculations) in order to get sensible results.
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CHAPTER 2. ATOMISTIC SIMULATION 2.1. The perfect lattice

Later studies by Catlow and Lidiard in 1974 employed a core-shell model [24], al-
lowing ion polarisation. They also divided region II in two parts (region Ila and
ITb), in order to obtain a smooth transition from the region I-II boundary to the
non-relaxed region IIb. This method produced more reliable results.

In this chapter, we shall take a close look at the perfect lattice and the simulation
of defects therein. We shall see how we can derive useful data from the simulations.
However, this description of the techniques is by no means complete, nor does it
describe what the programs implementing these methods do, exactly, since they
have, over the years, become very complex, and employ additional algorithms to

increase performance.

2.1 The perfect lattice

Considering only pairwise ionic interactions, — in our case Coulombic and short-
range, ®(r;;), interactions — the lattice energy, Ey, per (single atom, 7) unit cell

can be calculated from:
Bri= oS8 DS ) 45, (21)
’ 87T€0 Tij 2 J

where g; is the charge of ion 7, and 7;; is the distance between ions ¢ and j and ¢ is
the dielectric constant. The first summation concerns the Coulombic or electrostatic
energy of the lattice, and the second deals with the short range interactions between
the ions. Although formally there is nothing wrong with this summation, it can
not be solved directly. The 1/r dependence of the Coulombic potential combined
with the summation over three-dimensional space forces us to use a mathematical
construction to calculate the lattice energy.

Fortunately, the Coulombic part of the lattice energy can be written as a sum
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CHAPTER 2. ATOMISTIC SIMULATION 2.1. The perfect lattice

over charge times potential, ¢(77;):
Ecri = ¢(73)gi, (2.2)

which reduces the problem to that of calculating the potential at the ion site (or sites
in the case of a more complex unit cell), but does not take away the convergence
problem.

The convergence problem is solved by using the Ewald method, a mathemati-
cal construction which allows the calculation of the energy of an infinite array of
Coulombic charges. Presented here is the principle of the Ewald method for a hy-
pothetical single atom unit cell material. The observant reader will note that the
lattice energy for our hypothetical system is infinite, but the method, when applied
to a normal neutral ionic system, results in a finite lattice energy.

The Ewald method divides the potential into two parts; ¢; and ¢o. ¢; (Fig-
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Figure 2.1: Construction of ¢; from a lattice of Gaussians minus a Gaussian at a

reference point as used in the Ewald approximation.

ure 2.1) is based on a lattice of positive Gaussian charge distributions, minus one
Gaussian at the position 7; of reference ion 7; ion ¢ does not feels its own electrostatic
potential.

¢ (Figure 2.2) is based on a complete lattice of negative Gaussians and positive

point charges the total of which gives charge zero.
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Figure 2.2: ¢, as used in the Ewald approximation.

Summing ¢; and ¢, results in the potential at reference site i, ¢(7;), caused by
an array of point charges. Let us consider ¢, first.

¢1 Can be divided into two parts:
¢1(7) = ¢r.(7) — ¢:(7), (2.3)

where ¢; is the potential caused by ion i and ¢, is the complete lattice potential,

which can be represented by a Fourier series:
SL(7) =) e, (2.4)
e}
caused by a charge density
p(r) =Y pae™. (2:5)
q

In these equations, G is the set of possible reciprocal lattice vectors. The relation
between c; and pg is evident using Poisson’s relation between the electrostatic

potential and the charge density:

pe = G?cq. (2.6)
A Gaussian charge density for a single atom of charge ¢; and half width /%2 is:
pilr) = qi(n/m)*?e ™. (2.7)
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CHAPTER 2. ATOMISTIC SIMULATION 2.1. The perfect lattice

Now equations 2.7 and 2.5 can be evaluated by multiplying with e~i¢" and
integrating 2.7 over the whole crystal and 2.5 over the unit cell. These integrations

should be identical:
/ Z pae'’Tdr = Vopa, (2.8)
Ve

consequently

Vepe = / qi(n/ﬁ)?’/ze_”ﬁe_ié"?df': S(G)e7n, (2.9)

— -

where S(G) is the structure factor >, ¢;e~*“"™ (in case a unit cell containing more
than 1 ion is considered). Using relation 2.6 and substituting result 2.9 in equa-

tion 2.4 we get:

S(G) -«
o = —e W, 2.10
=X (2.10)
The contribution of ¢; to the field is:
1 Qp(F) — 1 771/2
Y e (A S 2.11
¢ /EOT T ar 260q w3/2 (2.11)
so with 2.3 we have:
S(G) - 1 g2
=) e — —q— 2.12
(bl ~ VU € 2€0q7T3/2 ( )

For ¢, we consider the point charges and gaussians and use ¢V - E = p for

spherical geometry to split the Gaussians in two parts, r < r; and r > r;:

b= e Sl — - [ oear— [~ 2 Da (2.13)

4meq ;T
- Z &erfc(nlﬂr ) (2.14)
dmeqy 7 7 ’
and finally:
B S(G) @ 1 /2 1 qj 12
¢ = ; Vs et — 2 B3 dmey ; T—jerfC(ﬁ r5); (2.15)
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which is a function which depends on the value of n for its convergence behaviour.

Work by Catlow and Norgett [35] suggests that a good value for convergence is:

3
5T \1/6
— 2.16
77 (‘fg) 7 ( )

where s is the number of atoms in the unit cell and V4 is the unit cell volume.
Now we know that it is possible to calculate the lattice energy of an array of point
charges, let us consider how we can manipulate the lattice to obtain the minimum

lattice energy.

2.2 Minimizing the Lattice Energy

Most programs which model ions as static species allow minimization of the lattice
at constant volume or pressure. The constant volume option means that the unit
cell dimensions do not change, only the arrangement of the atoms inside the cell
are allowed to assume a minimum energy geometry. A constant pressure calculation
varies the lattice vectors as well as the atom positions. We can define the lattice
energy as a function of a set of N new ion coordinates, ', which have changed from

the original set, r, by:
1
U(r') :U(T)+gT-(5+§6T-W-5, (2.17)

where § and g are vectors of dimension 3N + 6, N being the number of ions in the
unit cell. The 3N components of § are the displacements of 7’ relative to r. The

remaining 6 components of § are the independent bulk strain components, d¢, of the
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symmetric strain matrix, E:
581 %(586 %(585
E= |16 ey 30es (2.18)

1 1
5585 5(584 583

and thus the set of coordinates 7’ is related to the set r by:
r'=E- (r+or). (2.19)

Thus, E is the Voigt matrix representation of the vector de. The vector g refers
to the first derivative of the lattice energy with respect to the ion displacements and

the strain components,

oUu oU
=(=—,=—)- 2.20
9= 5r a5e) (2:20)
The matrix W contains the corresponding second derivatives:
22U o%U
wo (o oer | _ [P Wer (2.21)
U U ' '
dE-r OEE Wiz Wi

2.2.1 Minimizing to Constant Volume

When minimizing to constant volume, the strain in the ion coordinates is removed,

so that at equilibrium,
ou

B 0(= g)- (2.22)

Combining equations 2.17 and 2.22 and neglecting the bulk strain components of

the vectors g and 4, gives:

0=g+W,,-or, (2.23)
so the optimum displacement of an ion at point r from equilibrium is:
or=-W_ 1 g (2.24)
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If the energy of the system were perfectly harmonic with respect to the strain,
equation 2.24 would give the value of r, and hence the lattice energy, at the mini-
mum. However, this is generally not the case, so equation 2.24 must be solved by
an iterative procedure.

The main drawback associated with this method of minimization is the storage
and inversion of the 3N x 3N matrix W. The time required for inversion of the W
matrix can be reduced by using the method of Norgett and Fletcher [36] whereby
the W~! matrix is updated by an approximate method and only occasionally recal-
culated explicitly. In the (k + 1)™ iteration, the new coordinate positions are given
by:

Te+1 = Tk — gk - Hy, (2.25)

where

H, = (W) (2.26)

H;, is known as the Hessian matrix and an estimate for the next iteration step can

be obtained from the approximations of Davidon [37] and Fletcher and Powell [38] :

or-6rT  Hy-dg-6¢T - Hy

H,..=H - 2.2
k+1 k + 57‘T . 59 5gT . Hk . 69 ? ( 7)
or
gt -H, Hy-6g-0r" og" -Hy -6g, or-ort
H = H, — — . 2.2
kil ST Sg orT - dg (1+ orT - dg ) orT - bg’ (2:28)

where 0r = rgy1 — 1y and 09 = gx11 — gx- Therefore, this approach only requires
the recalculation of the forces g after initial calculation of H. For most of the sys-
tems studied in this thesis, it was sufficient to perform one initial matrix inversion,
followed by approximate updating and occasional full inversion, to achieve conver-

gence.
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2.2.2 Constant Pressure

For constant pressure calculations, the energy is minimized with respect to the ion
coordinates as for the constant volume case, but in addition the bulk strains acting
on the cell are removed by adjusting the lattice vectors. The bulk strains, de are

defined so that they transform every vector r in the lattice to r’, where:
r'=>1+E)-r. (2.29)

Here I is the identity matrix and E is the symmetric strain matrix defined in equa-
tion 2.18. The strains are calculated assuming Hooke’s law (i.e. the strain is pro-
portional to the stress on the crystal), with a constant of proportionality given by
the elastic constant tensor. The stress is the first derivative of the lattice energy

with respect to strain. Hence, the bulk strains, de, are given by:

aU C_l

e = 22
© 7 Boe ’

(2.30)

where C is the elastic constant matrix. The elastic constants are defined as the
second derivatives of the lattice energy with respect to strain, normalized to the
unit cell volume. If equation 2.17, at equilibrium (g = 0), is expanded into its two

components we obtain:

1 1
U(r'y=U(r) + iérT W,y 6r 4+ 0rT - W, g - 5 + 5(55 -WgE - €. (2.31)
Also at equilibrium,
ou
—— =0 2.32
aor (2.32)
so that
or=-W_ 1 - W,g-de. (2.33)
Substituting this equation into 2.31 gives the total energy as:
1
U(r') =U(r) + 50e - (Wep = W - W W,p) - 6. (2.34)
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Thus, it follows that the elastic constant matrix is given by:
1

C =
Ve

Wgg — Wg, - Wfrl -Wig), (2.35)

where V¢ is the volume of the unit cell. Using 2.34 and 2.35, expression 2.30 may
now be substituted into equation 2.29 to give the new lattice vectors and ionic
coordinates. As the energy is not harmonic, the bulk strains must be removed
over several iterations. In practice, an efficient method for removing both the basis
and the bulk strains is, within each iteration, to first perform a constant volume

minimization and then to minimize with respect to the cell vectors.

2.2.3 Physical Properties

The previous sections have described the methods for the calculation of the equi-
librium lattice energy, cell parameters and elastic constants. It is also possible to
obtain the dielectric constant matrices.

At equilibrium the net force acting on each ion is zero i.e. g = 0. Therefore in

the presence of an external field, e.,

1
U(r'):U(r)+§(5T-W-(5—qT-r“-e°‘ (2.36)

ext

where r is the zero field configuration, q” is an N-dimensional vector which con-
tains the ionic charges and o implies the summation is over all components. Using

definition 2.21 equation 2.36 can be expanded to give:

ext

1 1
U@r') =U(r) + E(sT W -0 + 0 - Wiy - 07 + 0 - Wpp - 0¢ — q" 6% eg, (2.37)

Applying the equilibrium condition that U (r)/0r = 0, to the differential of this

equation and multiplying by the inverse matrix W !

, gives:
or® = _[Wr_rl ' WT‘E ) 5[5]& + [Wr_rl]aﬂ “q- e:ft (238)
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CHAPTER 2. ATOMISTIC SIMULATION 2.3. Defects
The dielectric displacement field, D, is defined by;
4 4
DY = eyt g d W g eh = a0 Wog 0l (2.39)
v
Thus, from the definition:
D% = Z kaﬂegt + Z ’}’agi, (240)
B i
the dielectric tensor k%, and the piezoelectric tensor, ¥*, are given by:
kP =59 4 T - W, 1]*P (2.41)
and
4dT
7 =—74 qa (Wt Wegl$, (2.42)
c

where 6%? is the Kronecker 4.

2.3 Defects

A considerable contribution to the formation enthalpy of a charged defect is the

relaxation of the surrounding lattice. Thus, computational constraints dictate that

we can only consider lattice atoms near the defect. Computationally, the simulated

defective lattice is divided into three parts (Figure 2.3),

e the spherical centre, Region I, containing the defect and a number of surround-

ing atoms (typically over 500),

e an interface shell, Region IIa, which lies between the defect and the remaining

lattice (typically containing over 1000 atoms)
e Region IIb which extends, mathematically, to infinity.
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Bl Region |\ Regionlla| Regionllb —3»
i (Extends to Infinity)

Figure 2.3: The lattice surrounding a defect is split up into three regions.

Region I is relaxed explicitly, using the minimization techniques described in the
previous section. In Region IIb the interactions with the defect region are considered
to be weak enough to allow treatment with a method based on continuum theories.
For a cubic crystal the response of the lattice at a distance r from the defect centre

of charge ¢ is described with the Mott-Littleton [39] approximation:

Ve qr 1
== (1-— 2.43
- ) (2.43)

where P is the polarisation of the crystal, per unit cell, and € is the static dielectric
constant of the crystal. Moreover, the electrostatic potential of region IIb ions on

ions in regions I and Ila is included by virtue of an Ewald summation.
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The total energy of the system is written as:
E = E(r) + Ex(r, () + E3(C) (2.44)

where E; is the energy of region I, arising from displaced ions at positions 7 in
this region; Fj is the energy of region II for which ¢ is the vector of coordinate
displacements for this region; and E5 is the interaction energy between regions I
and II. F3(¢) cannot be be calculated exactly since it involves an infinite number of
displacements. However, it is assumed that since displacements in region II will be
small, the harmonic approximation is valid so that Fj is a quadratic function of the

displacements, i.e.:
1
E3(()=5¢"-A-¢ (2.45)

where A is the force constant matrix. If we now differentiate the total energy with
respect to the displacements in region II, {, and apply the equilibrium condition,

0FE/0¢ = 0 we obtain:

| (2.6

where (' are the equilibrium values of . Thus, from equation 2.45,

8E]2 (’/’, C)
a¢

Substituting 2.47 into 2.46 and then into 2.44, we obtain:

( Jre=¢ = —A- (. (2.47)

B= B+ B¢ - 5O, o ¢ (2.19)

This removes any dependence of the energy, F on F3. Thus, in principle the defect

energy, E, could be found by minimizing the energy through solving equation:

dE

— =0. 2.4
dr 0 (2:49)
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However, this would involve the explicit differentiation of the outer region displace-
ments, ¢, with respect to r, which is difficult to do analytically because of the
complicated structure of £. We can solve this problem by only requiring zero force

on the ions of the inner region:

oF
(E)C:constant = 0. (250)

If the region II atoms are in equilibrium, these two approaches are equivalent. In

practice, this method leads to negligible differences with full energy minimization.

2.4 Interionic Interactions: Short Range Poten-
tials

In reality, the quality of the atomistic calculation depends on the short range poten-
tials, which, together with the Coulombic potential, define the system forces. Short
range potential descriptions can be two (®;;), three (®;;) or many (®;.,) body po-
tentials. Three body potentials are often used when modeling covalent systems, but
they are not used in this study.

The form of our short range two-body potential (not including the Coulombic

interaction) is usually the Buckingham form:

6

Dyj(ryy) = Aije " — (2.51)

The A;; and p;; parameters define the repulsive exponential part of the potential
and the Cg;; defines an attractive van der Waals or dispersive interaction.

The parameters A;;, p;; and Cg;; for pair potential 2.51 can be derived by using

different methods:
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e via quantum mechanical calculations on the system
e electron gas calculations
e Empirical fitting to experimental results

e 3 combination of the above methods

The quantum mechanical method consists of first calculating the total energy of an
array of atoms, varying the interatomic spacing, recalculating the total energy and
repeating this to form a potential energy surface. The parameters of the potentials
such as equation 2.51 are then fitted (using for example least squares) to reproduce

the potential surface.

2.4.1 Electron Gas Method

The electron gas method [40,41] approximates the interaction between the ions by
calculating the energies associated with the overlap of the electron gas densities
surrounding two atoms. The method assumes a spherical charge distribution, which
can be calculated quantum mechanically. The interaction between two ions then
becomes:

ET = EElec + EKE + EEzch + ECorr + EDispa (252)

where Ep. is the electrostatic interaction (nucleus-nucleus, nucleus-electrons and
electrons-electrons) between the two different ions. FEyp is the kinetic energy of
the electrons. FEg.q, is the exchange energy, E¢,.. is the correlation energy and
Episp is the dispersive contribution. A more detailed description of the terms in
equation 2.52 can be found in Harding and Harker [42] or Mackrodt and Stewart,
1979 [43]. If Er is calculated at different inter ionic separations, a Buckingham

potential form can be fitted to the resulting inter ionic interaction data.
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2.4.2 Empirical Method

Empirical potentials are derived by fitting to physical properties: observed crystal
structures, dielectric tensors and elastic properties. One of the reasons why the
empirical technique is successful, is that the theoretical derivation techniques usually
do not appreciate the dynamic behaviour of atoms, while the empirical method fits
to macroscopic properties which include the full behaviour of the ensemble of atoms.
Furthermore empirical potentials are not subject to the approximations inherent in
the quantum mechanical simulations. In addition, it has recently become possible
to fit to the properties of multiple structures simultaneously. This means that the
potentials are fitted over a number of interatomic separations rather than to just
one and are therefore more reliable at modelling distortions of the lattice [44,45].
In addition any experimental errors in the fitting data may be averaged out.

One of the most reliable ways of deriving potentials consists of first determining
the parameters using a quantum mechanical (QM) technique and using this as a
basis for empirical fitting. Blind fitting may produce apparently “good” potentials,
which might reproduce the lattice structure and elastic and dielectric behaviour,
but there exists a multitude of possible potentials which reproduce these observable
properties. It is therefore important to have a good basis for the individual inter-

ionic potentials especially when displacements may be significant.

2.5 Ionic Polarizability

Especially when charged defects are considered, the polarization of ions surrounding
the defect is significant. Ion polarisation opposes the average electric fields in a

crystal, causing the extent of a defect’s electrostatic interaction to be reduced.

o6



CHAPTER 2. ATOMISTIC SIMULATION 2.5. Ionic Polarizability

When calculating dynamic properties of ions (i.e. diffusion or vibration be-
haviour) the polarization of the ion in question is important. An early method of
modeling polarization behaviour was the Point Polarizable Ion (PPI) model, which
assumes a dipole moment linear with the electric field. Because the simulation
method we employ uses short range interactions which do not influence the local
electric field directly, the PPI model does not give satisfactory results. However, the
core-shell model, proposed by Dick and Overhauser [24] is a more useful descrip-
tion. In this model, a charged shell, which can be thought to be associated with the
valence electrons of an atom, is bound to a charged core by a central force spring.
The total charge of the shell and core is the ion charge. Displacements from the
equilibrium position induce a dipolar electric field around the pair. The interaction
energy between the pair is only the spring energy. A Coulombic interaction between
the pair is not used, because the spring constant is fitted to model the pair’s inter-
action as a whole. In treating polarisability, only the displacement of the shell and
a virtual equal counter charge is considered.

If we consider a shell with a charge ()y round an opposite countercharge —Qy,

the relation between the polarisability and the force constant is:

2
a= %, (2.53)
where a[C?m?J71] is the polarisability, K[Nm™!] is the force constant, and Qy[C]
is the charge of the shell.

Since the polarisability, o, is often [46] given in A%, and k is used in eVA~2, we
can substitute the “units” into equation 2.53 and rewrite it as follows:
Q%

e

o =14.3 (2.54)

where Qy is in the unit of electron charge.
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