Appendix B

Visualisation of Atomic Scale

Simulations

Originally the text in this appendix was written in HTML and the pictures and diagrams
in this reports could be accessed with a computer mouse, to illustrate an atomic scale
process via animations. Additionally, the references in the text in electronic format were
links to either the biography or WWW (World Wide Web) sites. In this text, all references
from the original report to paper documents or WWW-sites are listed in a biography. The
original report is solely available in the form of a CD-ROM disc, which can be viewed
on any modern personal computer with a CD-ROM drive and a HTML browser such as
Netscape or Internet Explorer.

The computer programs developed and packaged for this project were supplied on the
original CD-ROM disc but are now also available via the web at

“http://abulafia.mt.ic.ac.uk/penicillin”.

253

Appendix B. Visualisation B.1. Introduction

B.1 Introduction

The visualisation of atomic scale phenomena resulted from the need to understand the
spatial distribution of atoms in complex molecules, such as enzymes and proteins, and in
the crystal structures of inorganic solids. Initially, this resulted in the building of physical
ball and stick models. However, the results of computational chemistry and physics are
not always easily transformed into a physical model, particularly when the process being

modelled is dynamic.

B.1.1 Graphical Modelling programs

The advent of an affordable desktop computer (PC) with a graphical display led to the
development of a variety of software packages based on building a structure atom by atom.
Usually these packages allowed the user to specify atom colours, radii and positions, and
resulted in a 3-dimensional representation of the molecular structure. Recently, much
more sophisticated commercial packages have become available, which include a struc-
ture database and interactive graphics. Perhaps the leading solid state physics/chemistry
packages are those of MSI Inc., whose Cerius? package includes a development toolkit as
well as many advanced features.

Although advanced visualisation packages such as Cerius? support different input for-
mats and allow new formats to be defined, writing a module to create, for example, movies
is not straightforward or automated. The programmer would have to be familiar with both
the host program interface and the input and output formats. The large number of pa-
rameters involved in making movies forces us to use an automated batch method, which,
therefore, has no need for an interactive interface at all. Output formats of significant
interest are, for example, the POV-Ray input format or VRML output for use on the
World Wide Web.

In order to create high quality graphics in a structured way, a graphics language is

254

Appendix B. Visualisation B.1. Introduction

necessary. The Persistence of Vision Ray tracing [143,144] team have developed a language
which is highly structured and modular. Although the quality of the graphics produced
depends entirely on the skill of the user, the production of animated sequences is very
simple. Unfortunately, the rendering speed of POV-Ray is too slow to allow interactive

manipulation of the objects created.

B.1.2 Impact of the World Wide Web

The Internet and its protocols and standards has changed computing dramatically over the
last five years. Hyper Text Markup Language (HTML) [145] prompted the development
of a similar standard for 3-dimensional objects: the Virtual Reality Markup Language
(VRML), enabling users of networked computers (if equipped to understand VRML) to
manipulate 3-dimensional objects on screen, regardless of the type of computer or op-
erating system. VRML has not yet become as widespread as was initially anticipated,
mainly because of the high demands placed on processing power when actually viewing a
VRML world (a collection of objects). However, since VRML graphics are more basic than
ray-traced graphics (POV-Ray), VRML can be used to manipulate models interactively.
The demand for programs which can run on any computer led to the development of
JAVA by Sun. JAVA currently supports 3-dimensional graphics, but the development of
applications is still in its infancy. Nevertheless, packages for visualizing simple molecules
are available in Java (a basic example of the current abilities of the JAVA 3D API can be
seen at e.g. http://ws05.pc.chemie.th-darmstadt.de/java/). Moreover, JAVA comes with
both Netscape and Internet Explorer, the two most successful web browsers available at

this time.

255

Appendix B. Visualisation B.1. Introduction

B.1.3 Advances in Hardware and Software

As always, the development of software and hardware go hand in hand. Powerful 3-
dimensional applications rely on powerful processors and graphics sub-systems. Prompted
by the computer games industry, astounding progress has been made in graphics sub-
systems. 3D accelerated hardware is now as cheap as the Color Graphics Adapter (CGA)
was ten years ago. Simple PC expansion boards developed for games are as fast as pro-
fessional boards for high-end workstations were two years ago.

The games industry has developed a low level programming standard for these graphics
boards. Microsoft supports this standard via the DirectX libraries and via Silicon Graph-
ics’ OpenGL [146,147] libraries. Since DirectX is only available for Microsoft operating
systems and OpenGL is available for virtually all modern desktop operating systems, the

preferred development library in use today is OpenGL.

B.1.4 Atomistic Simulation

The examples of visualisation in this report are all based on the simulation of materials at
the atomistic level, that is, we explicitly model the interactions between the constituent
ions. All materials that we are concerned with are crystalline, that is, the ions occupy
well defined positions in space relative to one another. This is known as a crystal lattice.
Almost all materials used for engineering purposes possess defects. Some of the lattice
ions are either missing (a vacancy) or occupy an unusual position (an interstitial). Alter-
natively, impurities may be present which may occupy either lattice sites or interstitial
sites.

The aim of the type of calculations presented here is to understand how defects in a
crystalline lattice behave. Consequently, it will become possible to predict how to modify

a lattice in order that its properties can be tailored to a specific requirement.

256

Appendix B. Visualisation B.2. Atomistic Simulation Methodology

B.2 Atomistic Simulation Methodology

The ionic configurations and defect enthalpies reported here were calculated using the
“CASCADE” code [23]. The CASCADE code implements the Mott-Littleton procedure
which divides the lattice into two regions: an Inner Region I, which incorporates the defect
ions and in which the migration process takes place and an Outer Region II. In Region I the
interactions between ions, as defined though inter-atomic pair potentials, are calculated
explicitly, whereas in Region II forces are calculated using a continuum model. Ions in
Region I are relaxed to zero force using a Newton-Raphson minimization procedure. The
inter-ionic pair potentials consist of two terms: a long range Coulombic interaction and
a short range parameterized interaction. The parameters are selected to ensure that the

calculations reproduce experimental data [44].

B.2.1 Migration Enthalpy Calculation

We can use the static atomistic simulation code CASCADE to predict defect cluster en-
thalpies of intermediate steps in complex migration mechanisms. The migration path is
the minimum energy pathway from one solution site to the other. In simple crystal struc-
tures, crystal symmetry can make this task very easy. In principle, to obtain a migration
enthalpy profile we need only move the migrating species iteratively from one site to the
other, miminizing the surrounding ions at each step.

However, impurity ions (e.g. I™ in U3Og_,) migrate via a lattice vacancy mechanism
and clearly require that we introduce defect species into the lattice. A 2D schematic
representation of such a mechanism is shown in Figure B.1. The large iodide ion moves
between oxygen sites in this, the basal plane of the alpha-U3Og structure. This is possible
only when a vacant oxygen site is available for the iodide to move into. The migration of
oxygen in the structure is orders of magnitude faster than that of iodide. The schematic

representation of iodide migration therefore shows oxygen ions moving across the basal

257

Appendix B. Visualisation B.2. Atomistic Simulation Methodology

Figure B.1: From Picture a. to j.: the migration of I~ through the U3Og lattice. a.
Shows the initial position of the iodide in its equilibrium solution site. In pictures
b. through 7 the ion moves though the lattice via vacancies which come available as
a consequence of oxygen self-diffusion. Finally, in Picture j., the iodide is located
at an equivalent site as in Picture a.. It has travelled a distance of one primitive

lattice vector.

258

Appendix B. Visualisation B.2. Atomistic Simulation Methodology

plane and the iodide ion moving when a vacant site becomes available. (Note: oxygen ions
that seem to disappear are simply moving out of the simulation box.) Each time an ion
moves from one site to another, the difference between the solution site enthalpy and the
maximum energy encountered in between solution sites is the activation energy for the
diffusion step. Unfortunately this method does not yield pre-exponential terms or indeed,

the absolute diffusion coefficient.

B.2.2 Molecular Dynamics Techniques (MD)

Molecular Dynamics can in principle be used to determine the necessary diffusion coef-
ficients. Migration enthalpies can be predicted by simulating the thermal behaviour of
a large number of atoms, and studying their predicted behaviour as a function of time.
This involves solving Newton’s equation of motion given a series of ions with a distribu-
tion of kinetic energies. Again, the forces which act between the ions are defined by both
Coulombic and short range parameterized interactions.

The product of such a simulation is an extended sequence of position information.
Statistical analysis of the root mean square displacement (RMSD) of the data as a function
of displacement time yields the diffusion coefficient. Since diffusion follows a normal

distribution, the variance of the ion positions progresses as:

VAR(t) = VAR(t0) + 2Dt, (B.1)

where D is the diffusion coefficient, VAR(t0) the distribution of the diffusing ions at
t = t0 (which is zero in our case) and ¢ is the time interval used to calculate the RMSD.
Since we have a relatively small number of ions in the simulations presented here, the
distribution of displacements is not exactly normal. Additionally, a large contribution
to the observed RMSD will result from the thermal vibrations of ions. It is therefore

important to run the simulation for long time intervals to make accurate predictions.

259

Appendix B. Visualisation B.3. Visualisation Techniques

When the time intervals are too short, VAR(t) will not show a linear behaviour with

respect to t.

B.3 Visualisation Techniques

B.3.1 Images

High quality still images are produced using the Persistence Of Vision Ray tracing soft-
ware [143,144]. POV-Ray software includes a more than adequate descriptive language
for three dimensional objects, colours and textures. It is simple to translate output from
any type of modelling program (not restricted to atomistic modelling) to the input for-
mat required by POV-Ray. The “cas2pov” code (see Section B.7) does this conversion
for CASCADE output files. After conversion, the user needs to add texture to the atoms
and to position the lights and the camera. Recent versions of POV-Ray include extensive

support for making movie frames automatically.

B.3.2 Movies

Animated sequences of, for example, oxygen migration were produced by running a static
defect calculation for each frame in the movie. This simulation technique ensures that the
behaviour of the lattice ions is realistic in every frame.

After converting the output from the defect calculations to the appropriate POV-Ray
form, all configurations were ray-traced with POV-Ray using the same texture, lighting
and camera conditions. The actual encoding of these frames into MPEG movies was
carried out with “MPEG” version 1.2.1 by the Portable Video Research Group at Stanford
(PVRG). MPEG video is a very good video compression system, which was designed for
network use where bandwidth is limited. MPEG video encoding is, therefore, ideal for the

Internet.

260

Appendix B. Visualisation B.3. Visualisation Techniques

Figure B.2: A particle of U308-z. In the HTML report you can click the picture to

manipulate the structure as a VRML object.

The process of making movies was simplified by the use of the “make” utility (e.g.
Oram and Talbott [148]) in combination with the “perl” interpreted language (by Randal
L. Schwartz [149]). All graphics manipulation was done with “ImageMagick” by John
Cristy [150].

B.3.3 3D Interactive Objects (VRML)

The composition of movies has the disadvantage that the end user cannot manipulate
the contents of the movie. To some extent this can be overcome via the Virtual Reality
Markup Language (VRML) standard. VRML relies on the user to have a VRML browser
installed on his system. Previously, only Silicon Graphics, Inc. systems were shipped with
a VRML browser, but nowadays more and more home PC systems are able to understand
VRML and contain the hardware to process complex three dimensional scenes.
Translation of simulation data to VRML is very similar to the translation performed
for the POV-Ray translation and was done with the “cas2vrml” code which is very similar
to the “cas2pov” code. However, translation to an image format is not necessary, as

rendering is done at high speed (typically more than 5 frames per second) by the graphics

261

Appendix B. Visualisation B.3. Visualisation Techniques

system of the person accessing the VRML code. Although the image quality of a scene
rendered by POV-Ray will be superior to the result produced by the VRML browser, the
VRML browser is fast enough to give the user the impression that they are manipulating
the object in a literal sense. The image in Figure B.2 was produced with POV-Ray, but
when it is clicked with the mouse, the VRML code is sent over and interpreted by the
VRML viewer on the client (i.e. your) side. However, as VRML has limited support for

dynamic scenes, such as MD simulations we need to write an application.

B.3.4 3D Interactive Graphics with OpenGL

Using the X-Windows Motif and OpenGL libraries we can produce easy-to-use applications
with high speed realistic graphics. The advantages over MPEG movie encoding and VRML
objects is clear. MPEG movies allow us to see a fixed sequence of frames, but do not allow
any user interaction. VRML is all user interaction, but does not allow objects to be
animated in time.

We have written an example application which shows the positions of the ions in a
Molecular Dynamics simulation as they evolve with time and allows the user to manipulate
the cluster. The customer required all applications to run on SGI systems. The code uses
the standard SGI Motif libraries and the OpenGL libraries [146] which should be present
on all SGI systems. However, the code compiles and runs on virtually all systems which
have OpenGL and Motif libraries installed. A screen shot of the application is shown in

Figure B.3.

262

Appendix B. Visualisation B.3. Visualisation Techniques

Figure B.3: A screenshot of the MDviz code in action. The user is investigating a

high temperature simulation of a particle of UO,.

263

Appendix B. Visualisation B.4. Migration in UOy and U3 Og

B.4 The Migration of O?>~ and U*" in UO, and

U308

B.4.1 Crystallography

UO; exhibits a cubic, fluorite-type structure (Wyckoff IV,al) as shown in Figure B.4. In
this structure, vacancy assisted migration of oxygen ions occurs along <100> directions
between adjacent sites. In U3Og (the structure is shown in Figure B.5), the oxygen
transport behaviour is more complex because we may distinguish four different symmetry
types for oxygen in the structure.

As both the oxidation rate for U(VI) solids and vacancy assisted diffusion mechanisms
depend on the migration of oxygen, reliable predictions of the diffusion coefficient are
important.

The self diffusion of uranium through the lattice is important when studying fission
product behaviour; in particular, positively charged fission products often rely on uranium
self diffusion which becomes the controlling mechanism in hyper-stoichiometric UOo,.
Simulating the migration behaviour of uranium ions though uranium oxides using the
Quasi Harmonic approach is computationally more intensive, as the migration paths are

not straight.

B.4.2 Methodology

Migration though the lattice can be simulated by placing the migrating ion at consecutive
sites along its migration path and relaxing the surrounding lattice. This method is known
as the Quasi-Harmonic approach. The energy of the ion will change from the relaxed
lattice value through a maximum and back to the relaxed value again. The difference
between the relaxed enthalpy and the saddle point enthalpy is the migration enthalpy.

The program used to simulate the lattice relaxation is CASCADE [23].

264

Appendix B. Visualisation B.4. Migration in UOy and U3 Og

Figure B.5: The crystal structure of U3Og created with POV-Ray.

265

Appendix B. Visualisation B.4. Migration in UOy and U3 Og

Figure B.6: A fragment of the UO, crystal cut from an infinite crystal in which
an oxygen ion migrates. In the original report, clicking on the image would show
an animation of the migration of oxygen in UO,. Presented here are a selection of
snapshots from the original animation. Note that the actual calculations on which
this simulation is based consider an infinite lattice, not just the atoms shown in this

animation.

If the migration path is not known, a large number of calculations need to be performed
to find the path. Fortunately, in many structures symmetry predicts in which plane

migration will take place and the path can be found more easily.

B.4.3 Migration of U*" and O? in UO,

Figure B.6 shows a movie of the oxygen migration process in UOs. It is clear that the mi-
gration step does not substantially strain the lattice, that is, lattice ions are not displaced
from their lattice sites to any great extent. The associated oxygen migration enthalpy is
0.8 eV.

Migration of uranium ions on the other hand (Figure B.7) shows extensive lattice

266

Appendix B. Visualisation B.4. Migration in UOy and U3 Og

Figure B.7: The migration of uranium in UQ,, details as in Figure B.6.

distortion during the migration process. Additionally, the charge state of uranium induces
extensive ionic polarisation effects (not visualized here). The migration enthalpy is more
than 6 eV.

As explained earlier, as an ion moves through the lattice from one stable energy position
to another (in the case of 02~ and U** migration in UQ; these are near the stable lattice
sites) the ion experiences an increase in potential energy up to a maximum which occurs
at the saddle point. In these cases, the saddle point occurs half way along the migration
pathway. The energy change is visualized by an alteration in the colour of the migrating
species. In Figure B.6, the migrating oxygen ion begins the motion as a red ion. As the
potential energy increases, the colour changes until it is yellow at the saddle point. The
colour changes back to red as the ion completes its journey. For U%*t migration as shown
in Figure B.7, the ion is initially green, becomes progressively pale towards the saddle
point and darkens as it completes the migration process.

Therefore, colour may be used as a dynamic variable, to import technical data, in

addition to its more usual function of simply differentiating between species.

267

Appendix B. Visualisation B.5. Results

B.5 Results

B.5.1 Migration of Iodide in U30g_,

An example of a fission product migration mechanism where oxygen self-diffusion is im-
portant is the migration of iodide in U3Og_,. lodide is a radiologically important volatile
fission product. The large ionic radius and its negative charge restricts this ion to occu-
pying substitutional oxygen ion sites in the U3Og structure. Migration of iodide relies,
therefore, on the mobility and availability of oxygen vacancies (as shown in Figure B.1)
In U3Og_,, a large number of oxygen vacancies are available to assist iodide to migrate
through the lattice. In essence, migration occurs via a number of stable iodide solution
sites of different enthalpies. Iodide moves from one site to the other via interaction with
oxygen vacancies.

Figure B.8 shows how this migration may take place. However, with a complex struc-
ture such as UsQOg, the information provided by Figure B.8 alone could be confusing.
Thus, conjunctive use of schematic animations such as in Figure B.1 may be very valuable

in guiding the viewer.

B.5.2 0% migration in UO, via MD

Migration enthalpies can be predicted by simulating the thermal behaviour of a large
number of ions or molecules and studying their predicted behaviour as a function of
time. Here, the motion of ions is simulated by solving Newton’s equations of motion for
a system of ions, using a methodology known as Molecular Dynamics Simulation (MD).
The interactions between the ions are the same as in the calculations described above.
However, interpretation of the data is very different and is based on the statistical analysis
of the ionic positions as a function of time. Owing to the computational constraints only

relatively fast migration processes, such as oxygen self diffusion in UO2 may be studied at

268

Appendix B. Visualisation B.5. Results

Figure B.8: Visualisation of an oxygen vacancy assisted migration process: I~ mi-

gration in U3Og_,.

Figure B.9: A particle of UO, as simulated with the Molecular Dynamics technique.

269

Appendix B. Visualisation B.5. Results

present.

Figure B.9 shows a particle of UO2, containing 324 atoms. Although we are able to
simulate particles of several thousands of atoms, a small particle was chosen to reduce
calculation times. The movement of the ions in the particle were simulated for three
different temperatures: 500K , 700K and 900K. The particle was simulated for 150 ps at
each temperature. The total simulation time is about 600 ps (including the time to heat
up the particle).

Figure B.10 shows the Mean Square Displacement (MSD) of the atom positions as a
function of time. A ion displacement threshold of 1A was used to filter the effects of atom
vibration from the RMSD calculation.

Figure B.11 shows the resulting diffusion coefficients. Our example calculation does

not yield a straight line Arrhenius plot for three reasons:

1. Probability theory predicts that the variance (or MSD) of Gaussian distributions
progress linearly with interval time. This theory fails if the diffusion length of the
ions approaches the cluster radius, especially at high temperatures and long interval
times where the diffusion length is, on average, shorter but of the same order of

magnitude as the cluster size.

2. Tt is difficult to distinguish atomic vibration from migration at low temperatures,

possibly affecting the 500 K result.

3. The migration activation energies for surface species will be different from these
for bulk species. We have developed methodologies for differentiating between bulk
and surface ions [31] although here the small size of this particle inhibits a clear

distinction between the two types of species.

270

Appendix B. Visualisation

B.5. Results

6.0x10°% T T

5.0x107%

4.0x107

3.0x10%

2.0x107

- 4//!:;;1 - "/* -

B T=500K
B T=700K
T=900K

1.0x10™ 7 -~
»
& o
T
0 2

Figure B.10: The mean square displacement of lattice ions at constant temperature,

which should be a linear function of time. The gradient of this function is the

diffusion coefficient at that temperature.

1E-22 ———

1E-23

1E-24

L T ¥
1200 1000

T
800

T
600

Figure B.11: In an Arrhenius plot of the diffusion coefficient normal activated pro-

cesses should result in a straight line. As our calculations were only performed at

three different temperatures, there is a considerable uncertainty associated with the

predicted activation energy (i.e. the sloL}e? f)f the line).

Appendix B. Visualisation B.5. Results

Figure B.12: A cut from an ideal crystal of LaF3. Click the image to see a movie of

the heating process from 10K to 1000K.

Figure B.13: The hopping behaviour of fluoride ions in LaF3.

272

Appendix B. Visualisation B.6. Concluding Comments

B.5.3 Modelling of an LaF3; Nanocluster with MD

In the previous sections we have studied migration mechanisms in detail, by simulating
individual ion migration and the behaviour of an ensemble of atoms and used statistical
techniques to extract diffusion coefficients. In this section, we will study the movement of
individual atoms in a molecular dynamics simulation.

We start with an ideal 552 atom cluster of LaF3 (Figure B.12.). When the cluster is
heated, ions begin to migrate. After the simulation has been performed, we can remove
most of the atoms from the visual field and focus on a few atoms which move from their
relaxed positions. An animation of this process is shown in Figure B.13, which illustrates
the hopping motion model proposed for migration of F~ ions through the lattice. However,
it also shows that at one point toward the end of the video clip, many of the ions hop
at approximately the same moment; this occurs via a concerted process. Now that we
are aware that this type of process occurs, we must derive the analysis tools necessary to
assess its overall importance in the migration process. It is pertinent to note that without
an animated sequence this complex migration process in LaF3 would probably never have

been discovered.

B.6 Concluding Comments

Transport phenomena in solids can be exceedingly complex. It is necessary, therefore, to
develop visualisation techniques which are able to emphasize important aspects of such
processes. Without doubt, such animated sequences are able to convey information which
would otherwise require many pages of highly detailed text. Here we have provided some
examples which demonstrate this point using some of the most recent facilities available.
None of these examples required particularly powerful hardware or expensive software.
With the advent of 3-dimensional programming libraries and standards (such as OpenGL,

Java 3D API and VRML) it is possible not only to view a static object, but to alter the

273

Appendix B. Visualisation B.7. Computational Issues

perspective of a 3-dimensional evolving object. The next step will be to specifically ad-
just individual elements of a simulation as the simulation takes place. For example, to
introduce a molecule or ion to a surface. Such processes underly chemical vapour deposi-
tion, ion beam milling, ion implantation or radiation damage. Furthermore, as computing
facilities become more powerful, it will be possible to carry out such simulations as part
of the control loop for surface techniques. In all cases it is critical to provide an effective

graphical interface for interpretation.

B.7 Computational Issues

In this section, some of the technical details of modelling software are discussed. In par-
ticular, the merits of various tools and libraries used for developing visualisation software
are reviewed. Finally, details of how the images and animations were constructed are

discussed.

B.7.1 Example Modelling Software

An example application was developed for viewing the results of a Molecular Dynamics
simulation. The following tools were used for the development of the code:

e Autoconfig, Free Software Foundation, Inc.

e “make”

e “RCS” Revision Control System

e Silicon Graphic’s and GNU’s C++ compiler

e File_ARC class, V. Bulatov, Atomistic Simulation Group

e (CascadeCluster class, G. Busker, Atomistic Simulation Group

e OpenGL (Silicon Graphics Inc.) and Mesa (Brian Paul, 1995-1997)

274

Appendix B. Visualisation B.7. Computational Issues

e Motif (Silicon Graphics Inc.) and LessTiff (Free Software Foundation Inc., 1995)
e GLUT library, Silicon Graphics, Inc.

e trackball, Gavin Bell, Silicon Graphics, Inc.

“Autoconfig” is a utility which allows developers to configure their source code to
be platform independent. By using “Autoconfig” our package compiles under Digital

“make”

Unix, SGI IRIX, Solaris, Linux and probably many more operating systems. The
utility is instrumental in this regard, as “Autoconfig” changes the “make” project settings
depending on which platform is used. “RCS” was used to keep track of revisions of the
source codes.

The C++ language was used, because data abstraction is transparent and modular
code is easy to implement in C+4. Some of the classes used in this project were written
a long time ago by myself and V.L. Bulatov. The fact that no changes needed to be made
to those classes is significant: problems caused by having different versions of the same
module can be disastrous for further development of code.

OpenGL was used as the main graphics code. It handles such details as surface ren-
dering, object and camera definition, translation and lighting. Motif was used for the
construction of menus and dialogs.

Both “GLUT” and “trackball” are codes which were developed at Silicon Graphics
Inc. to demonstrate the possibilities of OpenGL. The icosahedron drawing routine was

taken from the “GLUT” library and the implementation of the object manipulation by

mouse was copied from “trackball”.

B.7.2 Conversions

Some code was developed to cope with the output data presented by simulation software,
such as “CASCADE” and “Penicillin”. Codes for creating POV-Ray input files and even

VRML files were developed, using the same classes which were used for the visualisation

275

Appendix B. Visualisation B.7. Computational Issues

package.
Some features of the conversion codes are the ability to specify cutting planes and
the inclusion of a ionic radius and colour database. These tasks are by no means “user

friendly”, yet.

B.7.3 Making the Movies and Pictures

The use of “make” and “Makefiles” has greatly simplified the building of complex packages
and can be used successfully for tasks such as making movies. The process of making a

movie is shown here schematically:

Movie sequence

Rendering
) Objects Composition Resolution
Conversion
Positions Colours Camera lighting
Simulation T

Simulation results

If, for instance, we want to change the length of the movie, we will have to perform
additional calculations. On the other hand, if we just want to change the resolution, we
can suffice with re-rendering the movie frames. By constructing a “Makefile” project with
the correct hierarchical structure, “make” will decide which calculations, renderings and
conversions need to be done. Since a small 100 frame movie is constructed from up to 1000
source files, it is nearly impossible to manage this by hand, unless one is prepared to redo

all the necessary calculations (which may take up to a week on an average workstation).

276

