Appendix A

The Penicillin MD code

The original “penicillin” program was designed to perform Molecular Dynamics
simulations on clusters of atoms and ions in vacuo and produce a range of simulation
data as output. Details of some of the simulation methodology can be found in
Section 7.1.

The need to process many megabytes of raw output data from MD simulations
resulted in the development of a large number of computer programs to perform
complex operations and allow visual inspection of the data. In this section some
notes on the use of “penicillin” are presented and the support programs are docu-
mented in detail.

During the course of this work the main penicillin code was overhauled to make
it function correctly for large clusters and several bugs were corrected by the author.
Two optional parallel algorithms were included and several programs were added to

the suite of support codes.

238

Appendix A. Penicillin A.1. Penicillin

A.1 Penicillin

A.1.1 Running penicillin

The operation of penicillin is controlled by the penicillin input file and a restart file.
Since the operation of penicillin is not very well documented and even inconsistent at
some points, it is best to configure single runs at first and try restarting simulations
in test cases before attempting this in a full size simulation.

Creating new input files can be done with the penicillin program. The original
author of penicillin attempted to make the input files both human friendly and
machine readable. In practice this means that one has to be very careful changing
things in input files generated by penicillin. An example of the input file used in

section 7.8.1 is shown below.

penicillin
Molecular dynamics program.
Version 4.1.3 27/2/99

Written by Adrian Dornford Smith
and
Volodya L. Bulatov

Parallel version (>4.1) By Gerdjan Busker

penicillin input file.
Simulation name is uo2

Boundary conditions = None

Simulation temperature = 1000.00 Kelvin
Time step = 1.000e-15 seconds
Number of energy rescaled cycles
Number of energy unscaled cycles
Simulation status = start

Energy consevation tolerance = 1.000000e-03f eV
Step size status = variable

100000
1000000

239

Appendix A. Penicillin A.1. Penicillin

Comments are :-

#Instruction 1 = Change temperature by +3.00 K. Frequency = 1.00e-13 seconds
during rescaled.
#Heating to ambient temperature, then allow reequilibration

Potentials = :-
Type-1 Type-2 Name Parameters
0 0
2 2 Buckingham A = 9547.96 rho = 0.21916 C = 32.0
24 g Buckingham A = 2484.2866 rho = 0.3410 C = 41.9847
?4 ?4 Buckingham A = 18600.00000 rho = 0.27468 C = 32.64000

Averages are :-

Output instructions are :-—

Output 1 Insight frame. Frequency = 5.00e-14 seconds. File = arc

Output 2
File = res

Over write penicillin restart file. Frequency = 5.00e-14 seconds.

Output 3 = Over write penicillin restart file. Frequency = 5.00e-14 seconds.
File = res.bak

Output 4 = Displacement time in s. " " Root mean square displacements. " "
Temperature in K of the whole system. Frequency = 1.00e-14 seconds. File =
rmsd

Output 5 = Displacement time in s. " " Root mean square displacements. Atom
type =1 (0). " " Temperature in K of all atoms of type = 1 (type 0).
Frequency = 1.00e-14 seconds. File = 0__rmsd

Output 6 = Displacement time in s. " " Root mean square displacements. Atom
type =2 (U4). " " Temperature in K of all atoms of type = 2 (type U4).
Frequency = 1.00e-14 seconds. File = U_rmsd

Atom definitions are :-

-2.000 Label
4.000 Label

2 Mass
1 Mass

Atom type
Atom type

16.000 Charge
238.000 Charge

Atom positions = :-

Co-ordinates in Angstroms.

240

Appendix A. Penicillin A.1. Penicillin

Type X y z Label

000TU4

-2.73367 -2.73367 0 U4
-2.73367 0 -2.73367 U4

0 -2.73367 -2.73367 U4
-2.73367 0 2.73367 U4

0 -2.73367 2.73367 U4
-2.73367 2.73367 0 U4

0 2.73367 -2.73367 U4

<etc>

2 -1.36684 -1.36684 1.36684 0
2 -1.36684 1.36684 -1.36684 0
2 1.36684 -1.36684 -1.36684 0
2 -1.36684 -1.36684 -1.36684 0
2 -1.36684 1.36684 1.36684 0
<etc>

e e el

The most important output from penicillin is in the form of “.arc” frames, collected
in one large file. Additional information such as temperature, time, RMSD displacements
and such can be written to files during runs although it is often more convenient to extract
this data from the “.arc” files after the simulation has been completed. Penicillin keeps
its state in the result file which holds all the potentials, times, number of iterations as well
as the ion positions and the necessary time derivatives.

The original version of penicillin was very easy to convert for use in a multi processor
environment, due to its sensible core design. Unfortunately it is hard to modify simulation
parameters during a simulation, partly because of the sensitivity of ionic systems to poten-
tial and ion position modification and partly because of the format of the input and state
files. An important improvement that can be made to the simulation code would be to
improve the input, state and output file structure and to allow transparent modifications

to the simulation state at any time.

241

Appendix A. Penicillin A.1. Penicillin

A.1.2 Multi processor penicillin

SMP - Symmetric Multi Processor

Since SMP shared memory systems based on the Intel MultiProcessor Specification (MPS)
have recently become popular, it was a logical step to incorporate a shared memory parallel
algorithm based on the MIMD (Multiple Instruction stream, Multiple Data stream) model
into penicillin. Writing shared memory applications is a straightforward exercise and the
choice of code libraries which facilitate the development of such applications are diverse.
Since POSIX 1003.1c threads is an IEEE standard, a Linux implementation of POSIX
threads (named Linuxthreads) was used to develop a parallel version of penicillin. On a
two processor system the code performed 85% more time steps than on a single processor
in the same system. Unfortunately not many manufacturers adhere to the published
POSIX standards. Many implementations of UNIX (e.g. Silicon Graphics IRIX) run all
the threads on one processor and do therefore not improve performance using this scheme.

Building pencillin for SMP hardware is described in detail in the source code package
documentation (Version 4.1.0 and later). Running the code is no different from running
the single processor version except that it will be nearly twice as fast on a system with

two processors.

MPI - Message Passing Interface

The MPI (Message Passing Interface) is a relatively new standard which allows parallel
algorithms where the data is exchanged between the processors by means of messages.
These messages are exchanged transparently through shared memory or network connec-
tions. The advantage of MPI code is that the processors do not need to reside in the same
machine or be of the same type. Furthermore, MPI is available for any computer system,
from networked desktop computers to multi processor super computers.

A significant increase in performance is obtained as long as each time-step of the

242

Appendix A. Penicillin A.2. Penicillin utilities

simulation is much longer than the time it takes for the processors to exchange simulation
data. In our algorithm the time it takes to perform a number of time steps is proportional
the number of ions squared. The amount of data that needs to be passed between the
processes on the different nodes only increases with n where the number of calculations
increases with n2. The introduction of parallelism is therefore very useful.

MPI support is available in penicillin Version 4.1.3 and later. Unfortunately the use
of the code is more difficult than the single processor version. MPI systems need to be
configured for the number and type of processors used and what method of communication
will be used. Details can be found in the documentation of the MPI system used. MPI
penicillin was tested with the “LAM” (Local Area Multicomputer) implementation of MPI
available for free from http://www.osc.edu/lam.html. Using LAM, the code has been
tested on a SGI Origin2000 with 6 processors and on a heterogenous networked cluster
consisting of an SGI Indigo2 and three dual processor Intel systems. The performance

scaled nearly linearly with the total amount of floating point processing power available.

A.2 Penicillin utilities

The penicillin utilities are all written in C++ and use the File_arc class by V. Bulatov.
This class was developed with visualisation in mind, so support for ion colours and radii is
included. Although File arc contains a brief library of ion properties, it is usually better
to provide a “atomproperties” file or an “ATOMPROPERTIES” environment variable
pointing to such a file. The “atomproperties” contains lines with the following elements:
<ion name> <ion charge> <mass> <radius> <red> <green> <blue>
The ion charge is in units of electron charge, mass is in atomic mass units, the radius is
in Angstrom and the RGB colour indexes are between 0 and 1.

The programs are called by typing in the command name with a number of parame-

ters. In this section the standard documentation convention is used where “<>” brackets

243

Appendix A. Penicillin A.2. Penicillin utilities

indicate mandatory parameters and square “[|” brackets indicate optional parameters.

A.2.1 ARC Files

ARC files are used by MSI/Biosym software to describe ionic configurations. Because the
visualisation codes in the MSI software are useful to view molecular dynamics sequences,
the ARC file was chosen as the output format for Penicillin simulations. However, the
ARC format is not well enough specified and not flexible enough for molecular dynamics
simulations. An additional problem is that each saved ARC frame is not at all a full

representation of the simulation state.

A.2.2 arc2dist

Synopsis
arc2dist <file.arc> [options]
Options: -a<start dist> Start of interval [m]
-b<end dist> End of interval [m]
-c Report concentration, not population

-i<include file> Include only atoms with number in <include file>

-n<atom name> Only use atoms with this name

-p Plot dist. using gnuplot

-g<script> Run a gnufit/gnuplot script

-f Do a fit with gnufit

-s<no steps> use no steps in distribution interval
-ts<time ps> Start time

-td<time ps> Diff time (if -ts xor -te given)
-te<time ps> End time

-X,-y,-Z Don’t use direction x,y and/or z

244

Appendix A. Penicillin A.2. Penicillin utilities

Description

This program classifies the ranges of the ions and reports the population or the concen-
trations of ions for each class middle. Concentrations are corrected for class width. The
program can call “gnuplot” directly and plot the resulting distribution on the terminal.
Motion in x, y and z directions can be suppressed although the calculation of concentra-
tions is not corrected for when an axis direction is eliminated. By default this program
uses the first frame of <file.arc> for the starting positions and the last frame for the

final positions, but this behaviour can be modified with the -ts and -te options.

Example

The following example prints the radial displacement distribution of oxygen ions (named
O in the simulation file “T'500.arc”). Only the bulk ions are taken into account, by means
of a “.bulk” file which was created using “arc2surf” (See A.2.3). The displacements are
calculated between 100 ps and 1 ns and the resulting distribution ranges from 0 to 10 A
in 20 steps:

arc2dist T500.arc -iT500.bulk -n0 -a0 -b10e-10 -n20 -ts100 -te1000

By adding the —-p option the resulting table is plotted directly to the terminal: arc2dist

T500.arc -iT500.bulk -n0 -a0 -b10e-10 -n20 -ts100 -tel000 -p

245

Appendix A. Penicillin A.2. Penicillin utilities

A.2.3 arc2surf

Synopsis

arc2surf <file.arc> [options]

Options: -a<atom name>
-c<cutoff dist A>
-f<frame no.>

-n<no. of neighbours> Criterion for surface/bulk

-pb Print bulk atoms

-pd Print distances for each ion

-pi Print distribution of neighbours
-ps Print surface atoms

-t<time ps>

Description

This program counts the number of neighbours each atom has within a cutoff distance
(default 3.87 A). The -p options determine what the output will be. For -pb and -ps the
bulk or surface atom number are printed depending on the number of neighbours each
atom has. An atom is bulk if its number of neighbours is greater than or equal to the
number supplied with the -n option (default 6). By default the atom positions are taken

from the first frame of <file.arc> but this can be changed with the -f or -t options.

Example

This example creates two files, one of which contains the numbers of the bulk atoms and
one the numbers of the surface atoms. The criterion for bulk ions is that they have 35 or
more neighbours within a 4.83 A radius. Surface ions are all ions that fail this criterion.
arc2surf T500.arc -c4.83 -n35 -pb > T500.bulk

arc2surf T500.arc -c4.83 -n35 -ps > T500.surf

246

Appendix A. Penicillin A.2. Penicillin utilities

A.2.4 arcdiet

Synopsis
arcdiet <file.arc> <sample interval> [options]
-f<first frame> Use frame <first frame> as the starting point for sampling

-i<include file> Include only atoms with number in <include file>

Description
“arcdiet” takes periodic frame samples from a .arc file and prints the resulting .arc data
to STDOUT. The typical use of “arcdiet” is to reduce the .arc file size to allow quicker

processing by e.g. “arc2dist” (See section A.2.2).

Example

arcdiet T500.arc 100 -£100 > T500-reduced.arc

Starting at frame 100, the file “T500.arc” is sampled every 100 frames and the resulting
.arc file is written in “T500-reduced.arc”. The resulting .arc file is approximately 100

times smaller.

A.2.5 arc2pov

Synopsis
arc2pov <file.arc> [options]
Options: -f<n> Frame number n
-t<time> Frame time

-i<include file> Include only atoms with number in <include file>

-c Output coordinates only, no POV-Ray header

Description

With cas2pov any saved “.arc” frame can be be converted to a POV-Ray file which can be

247

Appendix A. Penicillin A.2. Penicillin utilities

rendered with the POV-Ray ray tracing software to produce high quality graphics. Ionic
colours and radii are taken from the File_ ARC internal ion data library or from a personal

library (See section A.2).

Example
The following commands will generate a high quality rendering of the tenth frame of the
“U02.arc” output file. arc2pov U02.arc -f 10 > file.pov

povray -Ifile.pov -Ofile.tga

A.2.6 arc2arc

Synopsis

arc2arc <file.arc> <frame no.>

Description

The specification of the ARC file has been stretched a bit during the development of peni-
cillin. The current ARC files are therefore no longer readable by the original applications
that are aware of this format (e.g. GULP, MSI software etc.). “arc2arc” creates an ARC
frame that can be read by the original software. In retrospect, the choice of the ARC
format was unfortunate, because the format can not hold any dynamic data such as time

derivatives and masses.

248

Appendix A. Penicillin A.2. Penicillin utilities

A.2.7 cas2pen

Synopsis
cas2pen [-s <shapefile>] [-al [-u] <.res file> ..
Options: -s <shapefile> Use planes defined in <shapefile> to cut a cluster
-a Ignore previous -s
-u Unit cell only

Description: Ton positions are input from a CASCADE output file and are dumped in
a format that is understood by “penicillin”. A shape file is usually made to define stable
crystal surfaces.

An ion at position (z,y, z) is considered to be inside a plane when az + by + cz <=d

for all planes defined in the shape file.

A.2.8 casplot

Synopsis

casplot [-s <shape file>] <file.res>

Options: -s <shape file> use <shape file> to cut the cluster
Description

Casplot is an interactive utility to show the ion positions resulting from a CASCADE
defect calculation. The utility is included in the “castools” package available from

http://abulafia.mt.ic.ac.uk/busker and has been offered for inclusion in the Daresbury
software archive. Some documentation remains to be finished before this can happen.
Clusters can be cut using a shape file in the same manner as described in section A.2.7.
Further options include the addition of sticks to create ball and stick models, the mea-
surement of distances and angles, dumping the contents of the screen to a graphics file,

zooming, rotating etc.

249

Appendix A. Penicillin A.2. Penicillin utilities

A particularly useful feature is the ability to view the relaxation of ions surrounding a
defect in a perfect lattice. Casplot includes an option to create continuous graphics output,
thus allowing the user to record actions on screen and create an animated sequence which
can be published in HTML documents on the internet or reproduced on a computer screen.

The next release (Version 1.1) of castools will include a java applet for which balls and
sticks geometry files can be created, allowing the presentation of interactive schematic dia-
grams on the internet (e.g. http://abulafia.mt.ic.ac.uk /busker/yttria/java.html). Version
1.1 will be released under the GNU General Public License (http://www.gnu.org).

The code was designed with portablity in mind and will run on many different systems.
The ability to cut clusters was used in this study to create the initial clusters for molecular

dynamics simulations from CASCADE perfect lattice simulations.

Example
Figure A.1 shows the investigation of a simple substitutional Ru*t ion in a uranium
vacancy in UQOgy,. The sticks show the slight displacement of the nearest neighbour

uranium and oxygen ions towards the defect.

A.2.9 mdviz

Synopsis

mdviz <file.arc> [options]
Options: -i<include file>
Description

MDviz plays back Penicillin MD simulations on the screen. Atoms can be excluded or
included with the “include file” mechanism (See section A.2.3 for details on how to create
include files). The MD playback sequence can be stopped and started with the space bar

and the relative sizes of the ions can be increased and decreased with the “1” and “s”

250

Appendix A. Penicillin A.3. Future Development

keys respectively. As in “casplot” (Section A.2.8) the cluster of atoms can be moved and

rotated with the mouse.

A.3 Future Development

The penicillin code works very well for medium scale simulations of ionic particles and
has been modified to increase scalability in a cost effective way. In principle, very large
clusters can be simulated for nanoseconds using off-the-shelf hardware.

In terms of flexibility, it would be beneficial to redesign the input and output files
Penicillin currently uses. The input file format is error prone and difficult to read and
the output format does not fully describe the state of the simulation. Modifications to
the simulation parameters during the simulation are difficult and even continuing an old
simulation can be difficult.

Ideally, the input file would only contain potentials parameters, a description of the
atom or ion classes and simulation directives. The simulation data should only be kept in
a file which contains frames describing ion position, time derivatives of the positions and
ion masses. The output frames can be used to start a new simulation at any time and one
should be able to add or remove ions from the simulation at will.

Due to the object oriented architecture of the penicillin utilities, it is very easy to
change to an alternative file format. The Penicillin code itself will need a fair amount of
restructuring to accomodate the changes suggested in this section, but the core algorithms

can be left untouched.

251

Appendix A. Penicillin A.3. Future Development

Figure A.1: A demonstration of some of the features of casplot. The simulated
data comes from a CASCADE run in the study of ruthenium defects in UOq,,. In
this picture the atoms are represented as cubes because these are rendered more
quickly by the computer. However, a wide choice of shapes such as tetrahedrons,
isocahedrons, spheres and teapots are available. The Sticks can be attached to the

atoms using a computer mouse.

252

