
Chapter 1

Introduction

1.1 Disorder in Crystalline Materials

1.1.1 Crystal Structures

This thesis is concerned with crystalline materials and primarily with dis-

order in those materials. Crystalline materials are characterised by their

regular repeating structures. As early as 1848 Bravais showed that there are

fourteen symmetrical ways of arranging points in a 3 dimensional Euclidian

geometry, these are known as the Bravais lattices [1]. The Bravais lattices

belong to one of seven systems of crystal symmetry [1]. All possible crystal

structures may be formed from these lattices, which define the long-range

symmetry. Around each lattice point there are a series of atoms known as

the basis or motif (each lattice point accommodates an identical basis). The
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symmetry associated with the basis is called the point group symmetry and

includes short-range elements such as rotation and reflection. Translational

symmetry adds additional symmetry possibilities which combine with the

Bravais lattices to create 230 distinct space groups. All crystals (except

quasi-crystals) belong to one of these space groups.

This description, of course, is of a perfect lattice. In this thesis defects are

discussed as departures from the perfect lattice.

1.1.2 Point Defects and the Dilute Limit

Intrinsic Disorder Reactions

Disorder in crystalline materials occurs when atoms are displaced from their

crystal structure sites. Intrinsic disorder is so called because it is a thermally

activated process, requiring the addition of no impurities. In this respect it

is distinct from extrinsic disorder which arises through the presence of impu-

rity/dopant ions. Much of the work in this thesis is concerned with intrinsic

disorder in oxides. This intrinsic disorder can arise through three processes.

Frenkel disorder [2] (see figure 1.1) happens when an atom is displaced from

it’s lattice site onto an interstitial site, leaving behind a vacancy. Both anions

and cations undergo this type of disorder. For a binary metal oxide, MO the

defect reaction associated with this process is:

M×
M + V×

i → M··
i + V′′

M (1.1)
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Vacancy

Interstitial

Figure 1.1: Schematic diagram showing Frenkel disorder.

Schottky disorder [3, 4] (see figure 1.2) involves the creation of vacancies in

the lattice in a stoichiometric ratio. For example, for the same binary metal

oxide, MO, (such as that shown in figure 1.2) one vacancy of each type (M

and O) is created. The Schottky defect reaction for this material is thus:

M×
M + O×

O → V′′
M + V··

O + MO (1.2)

In a crystalline material with more than one type of ion, each species occupies

its own sublattice. If one atom of each species exchanges lattice sites then

an antisite pair is formed (see figure 1.3) The defect reaction for the antisite

process in MO is therefore:

M×
M + O×

O → O′′′′
M + M····

O + MO (1.3)

While, for binary oxides either Schottky or Frenkel process’ might dominate,

the antisite reaction would not be expected to occur as exchanging ions of

opposite charge ions will have a much greater distorting effect on the lattice
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Figure 1.2: Schematic diagram showing Schottky disorder.

Figure 1.3: Schematic diagram showing antisite disorder.
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than the creation of vacancies or interstitial defects. In more complex oxides,

with multiple cations, such as MgAl2O4 spinel the antisite reaction is much

more commonplace as the distortion resulting from exchanging the sites of

Mg2+ and Al3+ i.e. two positively charged ions is less (than exchanging the

places of oppositely charged ions).

Intrinsic Defect Concentrations

As temperature is raised, increasing numbers of atoms have sufficient en-

thalpy to move off their lattice sites, however in doing so they increase the

internal energy of the system. This increase is mediated by an increase in

the configurational entropy (the vibrational entropy may in contrast increase,

decrease or remain constant).

If the enthalpy of formation of n Schottky pairs in the material MO is n∆h

and the vibrational entropy is T∆s, then n∆g = n∆h − T∆s and if the

change in configurational entropy associated with this reaction is ∆Sc, the

change in the free energy, ∆G of the system is:

∆G = G−G0 = n∆g − T∆Sc (1.4)

where G is the free energy of the disordered system and G0 is the free energy

of the perfect crystal. The configurational entropy may be expressed as:

∆Sc = klnΩ (1.5)

where k is Boltzmann’s constant and here, Ω is the number of ways of ar-

ranging n Schottky pairs in the crystal. If, in the lattice, there are N ‘M’



CHAPTER 1. INTRODUCTION 30

lattice sites the number of ways of arranging n M site vacancies, ΩM is

ΩM =
N !

n!(N − n)!
(1.6)

An identical expression can be obtained for ΩO so that:

∆Sc = k ln (ΩMΩO) (1.7)

= k ln

(
N !

n!(N − n)!
.

N !

n!(N − n)!

)
(1.8)

= 2k{ln(N !)− ln[(N − n)!− n!]} (1.9)

This can in turn be written:

∆Sc = 2k[N ln(N)− (N − n) ln(N − n)− n ln(n)] (1.10)

if Stirling’s formula [5] for large numbers is employed:

ln(m!) ' m ln(m)−m (1.11)

Therefore,

∆G = n∆g − 2kT [N ln(N)− (N − n) ln(N − n)− n ln(n)] (1.12)

At thermodynamic equilibrium the free energy is at a minimum with respect

to n, i.e.
(

∂∆G
∂n

)
T,p

= 0. Thus, differentiating equation 1.12,

(
∂∆G

∂n

)

T,p

= 0 = ∆g − 2kT ln

(
N − n

n

)
(1.13)

Now, if N À n then the approximation N − n = N is valid and equation

1.14 becomes:

N

n
= e(

∆g
2kT ) (1.14)



CHAPTER 1. INTRODUCTION 31

or

n

N
= e−( ∆g

2kT ) = e−(∆h
2kt)e(

∆s
2k ) (1.15)

The quantity n
N

is defined as the concentration. ∆s is the change in vibra-

tional entropy arising from the disorder, often this is assumed to be zero

though this is not always the case [6]. An analagous derivation for each type

of intrinsic disorder discussed in section 1.1.2 exists for any, arbitrary lattice

structure. Nevertheless, implicit within the model is the assumption that de-

fect concentrations are small. Furthermore, if the enthalpy of formation of a

defect is calculated at the dilute limit then the quantity n∆h is the enthalpy

of formation of n noninteracting defects.

1.1.3 Defect Association

While it is not immediately obvious under what conditions the approxima-

tions made in the previous section are valid, it is clear that as defect concen-

trations increase they will begin to interact, in particular oppositely charged

defects will become associated. Previously when discussing Schottky disor-

der it was assumed that the defects involved were isolated from one another.

If, instead they are next neighbours as in figure 1.4 it might be expected

that their enthalpy of formation is reduced. Association can be written as a

defect reaction, for the case discussed above:

V′′
M + V··

O → {V′′
M : V··

O}× (1.16)
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VM

..
OV‘’

Figure 1.4: Schematic diagram showing a nearest neighbour Schottky pair.

This system is at equilibrium when:

K =
[{V′′

M : V··
O}]×

[V′′
M][V··

O]
= Ze−(∆ha

2kt ) (1.17)

where K is the reaction constant, Z is the number of ways of placing this

cluster in the lattice (6 in this case assuming that MO takes the rocksalt

structure as in figure 1.4) and it has been assumed that ∆s
2k
' 0. The quan-

tity ∆ha is the association (or binding) enthalpy. Its value is calculated for

explicit clusters as the difference between the enthalpy of formation of the

cluster and of the equivalent isolated defects, i.e.:

∆ha = ∆hc −
∑

i

∆hi (1.18)

where ∆hc is the formation enthalpy of the cluster in question and the ∆hi’s

are the formation enthalpies of the i isolated component defects. Some of

the work presented in this thesis considers ways to calculate such binding

enthalpies.
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For a large ensemble of interacting defects explicit calculations are not feasi-

ble and so an approximation is required. The most simple approximation is

to equate the enthalpy of association with the coulombic interaction between

defects:

∆ha =
qiqj

4πε0rij

(1.19)

where qi and qj are the charges on defects i and j, ε0 is the permittivity of

free space and rij the interdefect separation. Taking the effect of the medium

into account, assuming it to be a dielectric continuum;

∆ha =
qiqj

4πεrε0rij

(1.20)

where εr is the relative dielectric constant.

As concentrations increase there is a tendency for defects to become sur-

rounded by oppositely charged ions. This process screens ions from one an-

other, lessening the strength of their interaction. Debye-Hückel theory [7, 8]

provides a means of correcting for this screening process. The change in

energy arising from the screening, per pair of point defects, is given by:

∆hDH = − q2
i l

εrε0(1 + Rl)
(1.21)

where qi is the defect charge, εrε0 is the static dielectric constant and R is

the smallest distance at which associates will not form. The distance 1
l

is the

Debye length (screening length), where l is given by the expression:

l =

√
8π

εrε0kT

∑
i

niq2
i (1.22)

where ni is the number of defects per cm3. From the form of this equa-

tion it is clear that the screening length increases with a decrease in defect
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concentrations.

Debye-Hückel theory has been used to calculate defect concentrations in crys-

talline materials, primarily the alkalide halides(for example [9–11]) where it

reduces the degree of association; the differences becoming larger with in-

creased temperature and defect concentration. It is, however, not a panacea:

the distance R is not easily defined, as even distant pairs may be loosely

bound. Furthermore, the method relies (as does the corrected coulombic ap-

proximation, equation 1.20) on a dielectric continuum model, i.e. it assumes

that lattice relaxations are isotropic and a linear function of the interdefect

separation. At intermediate distances these assumptions are valid (see sec-

tion 6.2.1). However, at larger concentrations defects will tend to cluster

closely meaning that the association energy can differ based on the local

lattice structure.

In systems with very high defect concentrations different approaches are re-

quired. Sometimes it is feasible to assume that a particular cluster will dom-

inate the defect distribution, such as in work on disorder fluorite/pyrochlore

transition in which ions in the material become ordered/ disordered as a func-

tion of temperature [13,14]. In other cases a statistical approach is required

in which the partition function is estimated through intelligent sampling of

the different possible defect states, for example Al-Fe disorder in Ca2FeAl O5

brownmillerite [12] and in MnO-MgO solid solutions [15].
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1.1.4 Defect Transport

In chapter 5 the migration of intrinsic defects in MgAl2O4 is investigated. As-

suming that the system is at equilibrium, defects are able to diffuse through

the lattice under the action of Fick’s first law [6, 16,17]:

J = D
dC

dx
(1.23)

where J is the transport flux of a species in moles per unit area time unit, D

is the diffusion coefficient and dC
dx

is the concentration gradient. The diffusion

coefficient is composed of several parts [6]: a geometric term, γ; the jump

distance, λ and the jump frequency, Γ and can be written:

D = γλ2Γ (1.24)

It is found experimentally that ln(D) exhibits a straight line when plotted

against 1
T
, implying that the diffusion coefficient can be expressed as,

D = D0e
− (Qf +Qa)

kT (1.25)

where D0 is a constant; Qf and Qa are, respectively the formation energy of

the migrating species and the activation energy for the migration mechanism

and k is Boltzmann’s constant. This relation suggests that atomic diffusion

is a thermally activated process and the jump frequency, Γ, may therefore

be written in the form:

Γ = νe−
∆Gm

kT (1.26)

where ν is the vibrational attempt frequency and ∆Gm is the activation

energy of migration, equal to ∆Hm − T∆Sm, where ∆Hm is the enthalpy
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of migration and ∆Sm is the entropy change associated with the migration

process. Substituting for Γ in equation 1.24 results in:

D = γλ2νe−
∆Gm

kT (1.27)

Comparing equation 1.25 and 1.27 leads to a new expression for D:

D = γλ2νe−
(Qf +Qa)

kT (1.28)

Assuming the exponential term to be dominant then the diffusion coefficient

depends strongly on the activation energy for migration, especially if this

number is comparable in size with the formation energy of the defect species

in question.

Care should be taken in assuming the validity of Fick’s first law as it is

applicable only in steady state conditions, when J is time independent. If

the defect concentration, C varies with time, then the rate of change of

concentration must equal the negative flux:

∂C

∂t
= −∂J

∂x
(1.29)

this may then be substituted into equation 1.23 to give Fick’s second law:

∂C

∂t
= D

∂2C

∂x2
(1.30)

a discussion of the solutions to this equation may be found in [17].

1.2 MgAl2O4 spinel

The mineral spinel was first characterised by Bragg [18] and Nishikawa [19].

This class of compounds, to which MgAl2O4 belongs, have a face centred
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cubic pseudo close packed oxygen sublattice within which the 64 tetrahedral

and 32 octahedral interstices are partially occupied by 8 A2+ and 16 B3+

cations respectively. Oxygen ions are displaced from the ideal fcc sites to

positions described by the anion positional parameter, u. This displacement

results in bond lengths, angles and interstice volumes. In MgAl2O4 the shift

is away the tetrahedral interstices meaning that the A site becomes larger at

the expense of the B site when compared to the idealised positions.

Barth and Posjnak [20–22] were the first to note that many materials having

the spinel structure could accommodate much disorder on the cation sublat-

tices. The disorder process involved is an antisite reaction in which an A and

a B cation exchange sublatttices. Verwey and Heilmann [23] introduced the

terms ‘normal’ and ‘inverse’ to describe the end members in the series of all

possible configurations. In a ‘normal’ spinel the A cations (Mg) occupy the

tetrahedral sites whereas the B cations (Al) occupy the octahedral sites. An

‘inverse’ spinel is then one in which the tetrahedral lattice sites are occupied

by B cations with the octahedral lattice sites being occupied with equal num-

bers of A and B cations. Cation order between the extremes of normal and

inverse spinel can be expressed as (Mg1−iAli)[MgiAl2−i]O4 where parentheses

refers to the tetrahedral sites and square brackets to the octahedral sites and

i is the inversion parameter.

The degree of inversion in MgAl2O4 has been measured in numerous ex-

perimental studies using nuclear magnetic resonance (NMR) [24,25], magic-

angle-spinning NMR [26, 27], infrared absorption [28, 29], neutron diffrac-
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tion [30–32] and electron spin resonance [33,34].

Studies of naturally occurring spinel have been performed, finding inversion

in the range 0.025 ≤ i ≤ 0.12 [26, 33, 34]. The same samples annealed at

elevated temperatures for a few minutes show values a high as i = 0.3 [33].

Synthetic MgAl2O4 has been found to have inversion in the range 0.1 ≤ i ≤
0.6 [30,34].

MgAl2O4 has previously been shown to retain crystallinity under irradiation

by fast neutrons up to a high damage level [35–37] (as much as 250 displace-

ments per atom, dpa [39]). Sickafus et al. [40] suggest that this radiation

resistance is largely due to three factors, namely: (i) Complex chemistry en-

suring that the critical size of a dislocation loop is large. (ii) The complex

structure which prohibits dislocation loops from easily unfaulting. (This

is significant because faulted interstitial loops are relatively poor sinks for

interstitial absorption). (iii) The ease with which MgAl2O4 is able to accom-

modate disorder. In fact the cation sublattices of spinel can be completely

disordered (i ≈ 2/3) [39].

This resistance to neutron irradiation has resulted in MgAl2O4 being consid-

ered a candidate material for use as an electrical insulator in future fusion

reactors [41]
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1.3 Ceria

Cerium dioxide (Ceria) takes the fluorite crystal structure. The lattice is a

face centred cubic cation sublattice with oxygen ions filling all the tetrahedral

interstices. Ceria is able to accommodate significant non-stoichiometry in

the form of oxygen deficiency, this gives rise to oxygen vacancies [42]. As a

consequence of these V··
O the material allows for ionic conduction via oxygen

vacancy migration, an effect which can be enhanced through the addition of

trivalent dopants [43–49].

High ionic conductivity has led to widespread study of ceria as a potential

solid electrolyte for fuel cells. Of the trivalent dopants (e.g., Y3+, La3+, Gd3+

and Sm3+) gadolinium is favoured for this application because dopant cation

has a small association enthalpy with oxygen vacancy defects [50,51]. Wang

et al. [52] showed that at in Ce1−2xY2xO2−x, at low dopant concentration (x

< 0.02) charged dimers form. They found the association enthalpy to vary as

a function of dopant concentration, attributed to the interaction of vacancies

with the dopant ions. This association is important because it acts so as to

trap oxygen vacancies and so reduce ionic conduction. Gerhardt-Anderson

and Nowick [50] investigated conduction in CeO2:M2O3 where M = (Sc, Y,

Gd, La) finding the conductivity to vary over three orders of magnitude

across this range of compound and reaching a maximum for Gd3+ doping.

Kilner and Brook [51] investigated the effect of host cation type on migration

enthalpies and of dopant cation size on association enthalpies concluding

that the contribution to the elastic strain energy due to the size mismatch
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between host and dopant cations is more significant than the electrostatic

energy between the dopant cation and oxygen vacancy.

1.4 Kröger-Vink Notation

Kröger and Vink proposed a useful notation to describe point defect reac-

tions [53]. The point defects are assumed to be dilute species, with the solid

being the solvent. The nomenclature consists of three parts; the body, the

superscript and the subscript. Using the example of the MO crystal, the

body represents the defect itself, ie. V for a vacancy or M for a M ion. The

superscript represents the effective charge of the defect i.e. a M vacancy has

an effective charge of −2. A positive charge is represented by a dot (•) and a

negative charge by a prime (′) and neutral by (×). The subscript represents

the site of the defect or if it is an interstitial, (i), (M) would represent a M

lattice site. Several examples follow:

M Vacancy

V
′′
M

A M ion has a charge of 2+ therefore its absence implies a net charge in the

lattice of 2−.
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M Interstitial

M
••
i

As the previous example except this time there is an extra M ion in the

lattice so the effective charge is 2+

B2+ substitutional on M site

B
×
M

B2+ has the same charge as M2+ so the lattice remains neutral.




