
Chapter 6

A Pair Sum Approximation for

Predicting Defect Cluster

Binding Energies in Fluorites

Much of the work presented in this chapter has previously been published in

Modelling and Simulation in Materials Science and Engineering [145]

6.1 Introduction

As discussed in the introduction, at concentrations beyond the dilute limit

defects can no longer be regarded as isolated, instead cluster formation must

be investigated. In ionic materials an important term controlling cluster

formation is the coulombic interactions between charged defects. The aim of
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this study is to realise a model capable of predicting, in a lattice consisting

of in excess of 106 sites at doping levels up to 1%, the extent to which this

clustering will take place and the energetic consequences of such clustering

in terms of the resulting structures.

6.1.1 Crystal Structure

Ceria is one of many structures with the formula RX2,, where R is a cation

(either di- or tetra-valent) and X is an anion. Such compositions are likely

to have the fluorite structure when the ratio of their radii, r(R)/r(X) ≥
0.73 [146]. This structure has FCC cation packing and the tetrahedral in-

terstices filled by anions, as illustrated by 6.1. Thus, the system has cubic

symmetry and exhibits the space group Fm3m, in which the ions occupy the

Wyckoff positions [147] shown in table 6.1.

Table 6.1: Wyckoff Positions for the fluorite structure [147].

Species Wyckoff Position Co-ordinate

R (4a) 000

X (8c) ± (
1
4

1
4

1
4

)

6.1.2 The CeO2-Gd2O3 System

Due to its widespread industrial applications there is an extensive body of

simulation work covering ceria. A thorough review of this by Islam and Bal-

ducci is available [148]. Of particular relevance to this materials application
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Figure 6.1: Unit cell of Ceria, The Ce4+ and O2− ions are represented, re-

spectively, by black and grey spheres.

as a fast ion conductor are calculations of the oxygen vacancy migration

energy. Values of 0.74 eV [149], 0.63 eV [150] are in good agreement with ex-

perimental evidence [44,151]. The CeO2-M2O3 system in particular has been

the subject of a number of theoretical studies such as [67, 152–154] which

have emphasised the importance of defect clustering in the determination of

conductivity.

Butler et al. [153] used atomistic simulation to calculate the energies associ-

ated with the clustering of an V··
O to between 1 and 4 M′

Ce defects, for M =

(Sc3+, Y3+, Gd3+, Ce3+, La3+). Showing, in accordance with experimental
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results, which indicate a peak in the ionic conductivity for a Gd3+ dopant,

that the cluster binding energy is smallest for M = Gd. Minervini et al. [67]

repeated these calculations, looking at a larger range of dopants and cluster

geometries, the potential set used for these calculations is again employed in

this chapter.

Understanding migration in the doped system is more complex, Murray et

al. [155] used static calculations for CeO2-Y2O3 to generate 30 local environ-

ments for an V··
O surrounded by between 0 and 6 dopant ions. The Monte

Carlo method was then used to statistically sample possible migrations, re-

producing the experimental maximum in the conductivity. Meyer et al. [156]

also used Monte Carlo simulations to investigate migration in DO2-M2O3

for a variety of D and M ions. They found that experimental results could

be reproduced when a model with reduced transition barriers near dopant

ions was used. They explained the results in terms of percolation theory, i.e.

at low concentration migration is faster as the migrating ion is surrounded

my paths free obstruction (by dopant ions) as concentration increases these

paths are filled in.

Previous work on the incorporation of M2O3 into ceria [67] and zirconia

[157] has shown that the lowest energy solution mechanism involves M3+

substituting at cation sites, charge compensated by oxygen vacancies (see

figure 6.2). Thus the overall solution reaction is:

Gd2O3 + 2Ce×Ce + O×
O → 2Gd′Ce + V··

O + 2CeO2 (6.1)

In this case the coulomb interations between V··
O and Ce×Ce are significant
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(this will be demonstrated in section 6.2.1). The consequence of this is that

Figure 6.2: Solution energies for incorporation of M2O3 in CeO2, assuming

isolated defects, where filled squares denote solution by V··
O compensation,

filled circles - solution by M···
i and filled triangles- solution by Ce····i . Reprinted

from [67].

a variety of cluster types might form: examples include a pair consisting

of a single substitutional cation and an oxygen vacancy (Gd′Ce:V
··
O)· or a

larger neutral cluster (2Gd′Ce:V
··
O)× which incorporates two Gd3+ species (an

example of a neutral trimer is shown in figure 6.3).

In previous work [67] the most stable defect geometry was identified for a

variety of single M3+ dopants interacting with a single oxygen vacancy. It

was found that while dopants of small radii prefer to be in first neighbour

sites those with larger radii prefer to form second neighbour geometries. In

this regard, for CeO2, the Gd3+ ion is of intermediate size, with only a slight
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Figure 6.3: Unit cell of fluorite containing an example of a charge neutral

(2Gd′Ce:V
··
O)× trimer defect. Here one of the Gd′Ce defects is on a first neigh-

bour site relative to the V··
O while the other is at a second neighbour site.
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preference for a second over a first neighbour geometry.

6.1.3 Energy Minimisation

The methodology used to evaluate defect energies in this chapter is that

described in section 2.7. The Buckingham potential parameters used are

reported in Table 6.2. The values of these parameters were chosen to repro-

duce the unit cell volumes of various related oxides, for example La2Ce2O7

and have previously be used to reproduce the perfect lattice properties of

ceria [67].

Table 6.2: Short-range potential parameters [67].

Species A(eV) ρ(Å) C(eV.Å−6)

O2−−O2− 9547.92 0.2192 32.00

Ce4+−O2− 1809.68 0.3547 20.40

Gd3+−O2− 1885.75 0.3399 20.34

Ionic polarisability is introduced via the shell model as described in section

2.5; the relevant parameters are reported in Table 6.3.

Table 6.3: Shell model parameters.

Species Y(eV) k(eV.Å−2)

O2−−O2− -2.04 6.3

Ce4+−O2− -0.20 177.84

Calculations described in this chapter were performed with the CASCADE
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code [121].

6.1.4 Cluster Binding Energies

The binding energy, BE, is the difference between formation energies of the

sum of the isolated defects (comprising a cluster) and the defect formation

energy of the cluster itself. It is used to assess the stability of a cluster; a

negative value indicates that the cluster is bound.

6.1.5 Defect Interactions Over Large Distances

Cluster calculations of the Mott-Littleton type become computationally pro-

hibitive when the defects involved are separated by more than 10 Å (due

primarily to the large region I size required in order that none of the con-

stituent defects approach the region I/IIa interface). Consequently an alter-

native scheme has been investigated, in which the total interaction energy of

defect clusters, consisting of more than two defects, is constructed by sum-

ming the specific pair-wise contributions between the constituents. The total

defect binding energy (BET ) is then:

BET =
n∑

j>i

n∑
i=1

BEij (6.2)

where n is the total number of defects and BEij is the defect binding energy

of the pair {i, j}. This method will only be useful if pair-wise interactions

between defects in a lattice are dominant, as it ignores any higher order
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contributions (i.e. the interaction between lattice defects A and B is not

greatly changed by the presence of another lattice defect C).

6.1.6 A Coulombic Approximation for the Pair Inter-

actions

In the defect pair interaction approximation described above defect-defect

interactions between pairs of defects are still computed explicitly, using the

energy minimisation simulation technique. A more simple, and easily com-

putable model of cluster binding energy would be to use a coulombic approx-

imation such that the binding energy of a constituent pair of defects i and j

is:

E(rij) =
1

4πε0εr

qiqj

rij

(6.3)

where rij is the separation of ions i and j (as defined by their unrelaxed

lattice positions), qi and qj are their excess defect charges and εr is the

relative dielectric constant of the material under consideration. In the next

section we shall consider, for the example of Gd2O3 doped CeO2, the limit

of application of: (1) the coulomb approximation for the interaction between

pairs of defects and, (2) the deconvolution of the larger cluster into its pair

components.
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6.2 Results and Discussion

6.2.1 The Coulombic Approximation

Three pairs of defects, (Gd′Ce:V
··
O)·, (Gd′Ce:Gd′Ce)

′′ and (V··
O:V··

O)···· have been

considered in detail. These are the only pairs that will occur in this model

of Gd2O3 doped CeO2 and as such their binding energies will later form the

basis for the pair deconvolution analysis.

Figures 6.4-6.6 show the variation of binding energy with separation for the

three dimers. The points on the graphs each correspond to an explicit

Figure 6.4: Binding energy (eV) as a function of separation (Å) for

a(Gd′Ce:V
··
O)· pair. Points indicate actual atomistic calculations, the line cor-

responds to equation 6.3. The negative value indicates that the pair is bound.
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Figure 6.5: Binding energy (eV) as a function of separation (Å) for

a(Gd′Ce:Gd′Ce)
′′ pair. Points indicate actual atomistic calculations, the line

corresponds to equation 6.3. The positive value indicates that the interaction

is repulsive.

Mott-Littleton determined binding energy for a cluster at a defined separa-

tion. The separations correspond to first neighbour sites, second neighbour

sites and so on. The lines on the graphs correspond to the coulombic ap-

proximation (equation 6.3) with the value of εr calculated using the model

parameters (tables 6.2 and 6.3). Thus in each figure 6.4-6.6, the extent

to which the points deviate from the line is a measure of accuracy of the

coulombic approximation, at that separation, for those particular defects.

It is to be expected that the approximation will become increasingly accu-
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Figure 6.6: Binding energy (eV) as a function of separation (Å) for a

(V··
O:V··

O)···· pair. Points indicate actual atomistic calculations, the line corre-

sponds to equation 6.3. The positive value indicates that the interaction is

repulsive.
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rate at larger defect separation and this is indeed observed (at larger defect

separation lattice relaxation is almost the same as for the isolated defects).

In the cases where the defect clusters are (Gd′Ce:V
··
O)· and (Gd′Ce:Gd′Ce)

′′ the

convergence is rapid: Once the species are separated by just four lattice sites

(i.e. approximtely 6 Å) the deviation is within 4% of the binding energy for

subsequent (Gd′Ce:V
··
O)· separations and within 5% for (Gd′Ce:Gd′Ce)

′′. In the

case of (V··
O:V··

O)···· convergence to the coulombic model requires the defects

to be separated by more than 9 Å before the convergence has reached an

acceptable level.

6.2.2 The Pair Binding Energy Deconvolution

The simplest neutral cluster is a trimer consisting of two Gd3+ substitutional

ions and one O2− vacancy, i.e. (2Gd′Ce:V
··
O)× (an example is shown in figure

6.3). The binding energies for this cluster have been evaluated for 62 different

geometries. These include, though are not limited to, all cases in which the

largest Gd′Ce:V
··
O and Gd′Ce:Gd′Ce separations are at most fourth neighbour.

The binding energy of the trimer can be considered, according to equation

6.2, as the sum of three pair interactions. We will consider two cases. First,

where the pair binding energies are derived from the simple coulombic model

(i.e. via equation 6.3). Following this we will consider the extent to which the

explicitly calculated pair energies (i.e. those in figures 6.4 - 6.6) reproduce

the trimer binding energies for these compact defect clusters.
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The Coulombic Approximation for (2Gd′Ce:V
··
O)× Binding Energies

Figure 6.7 illustrates the performance of the coulombic approximation (equa-

tions 6.3).
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Figure 6.7: Comparison of BE, for different geometries of the (2Gd′Ce:V
··
O)×

cluster. Ideally all points would lie on the solid line x=y, indicating that the

BE found via explicitly relaxing the trimer is equal to that found via the

coulombic approximation.

Ideally all points would lie on the solid line x=y, indicating that the binding

energy found by explicitly relaxing the trimer is equal to that predicted via

the coulombic approximation. The plot shows that there exist two distinct

groups, those geometries that fall close to this line and those that do not.

Those points falling far below the x=y line all correspond to clusters con-

taining at least one a first neighbour (Gd′Ce:V
··
O)· pair. The point furthest
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from the line is that in which all the ions are first neighbours with respect to

one another (only one 2Gd′Ce:V
··
O)× cluster in CeO2 can fulfill this criterion).

Geometries that do not contain first neighbour Gd′Ce - V··
O pairs fall close

to the line. For these cases, the coulombic approximation differs from the

explicit calculation on average by −0.0017eV with a standard deviation of

0.0345eV. It is not surprising that the coulombic approximation fails for first

neighbour geometries because, as shown in figure 6.4, it is particularly poor

at describing the Gd′Ce - V··
O interaction at this distance.

The Use of Pair Energies from Explicit Calculation for (2Gd′Ce:V
··
O)×

Binding Energies

Figure 6.8 compares the binding energies predicted via explicit calculation

to those predicted via equation 6.2, using pair energies calculated explicitly.

Ideally all points would lie on the solid line x=y, indicating that the binding

energy found by explicitly relaxing the trimer is equal to that found via

summing the contributions from the explicit pair interactions. The average

discrepancy between the two methods is 0.0004 eV with a standard deviation

of 0.0121 eV for all cluster geometries.

The result marked by a triangle represents the case where all the defects

are first neighbours (it is worth noting that this is not among the most

stable cluster configurations). It might have been anticipated that this would

be the most difficult case for the pair summation to reproduce and so it

proves; explicitly relaxing the cluster produces a more stable structure than
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Figure 6.8: Comparison of binding energy, for different geometries of the

(2Gd′Ce:V
··
O)× cluster. The green triangle represents the case where all the

constituent defects lie at first neighbour sites.
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anticipated by the pairwise summation. The less satisfactory prediction of

the pairwise sum in this specific case can be understood in terms of the

relaxation of the cluster and in how this relaxation contrasts with how each

of the constituent pairs relax in isolation. Table 6.4 contrasts the interdefect

separations for this trimer with those found for the relevant dimers. It can

be seen that the first neighbour Gd′Ce:V
··
O separation is unchanged between

the dimer and trimer, however the Gd′Ce:Gd′Ce separation is smaller for the

dimer than for the trimer. Thus, we find that the presence of an oxygen

vacancy results in a greater Gd′Ce:Gd′Ce relaxation which increases slightly

the binding energy of this cluster. This additional energy, Eijk amounts to

−0.059 eV per first neighbour trimer. This energy can be used to establish

a three-body energy correction for clusters that include such configurations.

The scale of this correction is shown in figure 6.8.

Table 6.4: Relaxed ionic separations (Å). The dimer values are those for a

first neighbour pair. In determining these separations the V··
O is at the lattice

site.

Gd′Ce:Gd′Ce separation Gd′Ce:V
··
O separation

Dimer 3.79 2.48

Trimer 4.04 2.48
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A Greater Challenge for the Pair Approximation: Calculating Bind-

ing Energies for (3Gd′Ce:V
··
O)′ Clusters

A range of (3Gd′Ce:V
··
O)′ cluster geometries have been chosen to further test

the pair binding energy approximation. Special attention is paid to those

which contain a single first neighbour (Gd′Ce - V··
O - Gd′Ce) component (an ex-

ample of such a cluster may be found in figure 6.9). Furthermore, the cluster

that contains three first neighbour (Gd′Ce - V··
O - Gd′Ce) components was also

included (note: it is geometrically impossible to form a (3Gd′Ce:V
··
O)′ cluster

with only two first neighbour (Gd′Ce - V··
O - Gd′Ce) components). Figure 6.10

illustrates these results in the same manner as figure 6.8. The relaxed pair

summation reproduces the explicit relaxation with an average discrepancy of

−0.0155 eV and a standard deviation of 0.0521 eV; this is larger than the

corresponding deviation for the (2Gd′Ce:V
··
O)× trimers.

In figure 6.10 the subset of the (3Gd′Ce:V
··
O)′ clusters containing one first

neighbour (Gd′Ce - V··
O - Gd′Ce) component, are marked by solid triangles and

the cluster with three first neighbour (Gd′Ce - V··
O - Gd′Ce) components is de-

noted by a star. The binding energies for these are clearly less well reproduced

than those for clusters with larger defect separations. Consequently the pre-

viously defined three body correction is added to the (3Gd′Ce:V
··
O)′ binding

energies predicted by the pairwise sum, once for each distinct first neighbour

(Gd′Ce - V··
O - Gd′Ce) component; the solid triangles in figure 6.10 are then

replaced by the hollow ones. The average discrepancy for the (3Gd′Ce:V
··
O)′

cluster is thereby reduced to 0.0049eV with a standard deviation is reduced
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Figure 6.9: Unit cell of CeO2 with (3Gd′Ce:V
··
O)′ defect, the 2 circled Gd′Ce

defects, along with the V··
O comprise the first neighbour (Gd′Ce - V··

O - Gd′Ce)

component for which the three body correction is required.
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to 0.0331eV.
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Figure 6.10: Comparison of binding energy, for different geometries of the

(3Gd′Ce:V
··
O)′ cluster. The triangles represent cases where at least one nearest

neighbour (Gd′Ce - V··
O - Gd′Ce) sub-cluster is present. The solid triangles

vaules determined via the pairwise sum, the hollow triangles show the pre-

dicted binding energy for the same clusters after the three body correction

is applied. The cluster with three first neighbour (Gd′Ce - V··
O - Gd′Ce) com-

ponents is denoted by a star, again solid for the uncorrected case and hollow

for the corrected value.

Further conformation of the success of the three body correction can be found

by considering an oxygen vacancy surrounded by four first neighbour Gd3+

substitutional ions (i.e. a clusters containing five defects). Two configura-

tions were considered. In the first, all Gd′Ce ions are at first neighbour sites
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with respect to the V··
O (it may be that this is the worst possible case for any

cluster), in the second all Gd′Ce ions are at second neighbour sites. In table

6.5 the pair only and three body corrected energies are presented for these

largest clusters. The first neighbour cluster contains six (Gd′Ce - V··
O - Gd′Ce)

components, consequently the pair sum does not accurately reproduce the

explicit cluster calculation.

Table 6.5: Binding energies (eV) for the tetrahedral defect cluster

(4Gd′Ce:V
··
O)′′.

Geometry Explicit

calculation

Pairwise

summation

Corrected

summation

First neighbour -0.555 -0.159 -0.516

Second neighbour -0.837 -0.812 n/a

Once the three body correction is applied the approximation fares much bet-

ter, falling within 0.05 eV of the cluster calculation. The second neighbour

cluster does not require the three body correction to reproduce the clus-

ter energy. Nevertheless the error in the predicted binding energy for such

larger clusters is becoming more significant and suggests that further analy-

sis should be carried out in order to estimate the cluster size (and through

configurational entropy arguments, defect concentrations) limit to which this

approach is useful.
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6.3 Summary

A method has been described whereby the total binding energy of a (geo-

metrically relaxed) defect cluster can be described as a sum of interactions

between the cluster’s component pairs. In the first instance these pair in-

teractions were calculated assuming the defects interact only through their

net coulomb charges, centered at perfect lattice sites. It was found that this

crude approximation worked remarkably well if the defects were separated

beyond first neighbour sites. Nevertheless, more detailed analysis of defect

pair interactions leads to the following criteria for this system: the Coulomb

interaction should be used to describe (Gd′Ce - V··
O) and (Gd′Ce - Gd′Ce) in-

teractions beyond third neighbour sites and (V··
O - V··

O) interactions beyond

ninth neighbour sites. For defect pairs within these distances the pair inter-

action energy should be taken from explicit pair binding energy calculations

that include full lattice relaxation.

Analysis of (3Gd′Ce:V
··
O)′ clusters showed that better results could be ob-

tained if a three-body correction of each first neighbour (Gd′Ce - V··
O - Gd′Ce)

interaction were incorporated into the model. It was shown that the same

correction significantly improved the predicted binding energy of a (worst

case) (4Gd′Ce:V
··
O)′ cluster with six (Gd′Ce - V··

O - Gd′Ce) components but that

pair interactions alone were still sufficient to describe a (4Gd′Ce:V
··
O)′ that did

not contain any such first neighbour components.

For the CeO2-Gd2O3 system the total interaction energy for a n ensemble of
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defects can, in this way, be described by carrying out as few as 16 calculations.

Previous work on ceria doped with a range of trivalent ions [67] and an

equivalent study on doped zirconia [157] suggest the same approach will be

successful for all these systems and by inference any fluorite. Of course,

if this approach were applied to a crystallographically distinct system the

number of explicit defect calculations would not necessarily be the same, it

is nevertheless anticipated that the number would remain relatively small.

The approach here provides a significant computational advantage by avoid-

ing the necessity of explicitly calculating energies for the multitude of distinct

cluster configurations. Although the effectiveness has been demonstrated for

small clusters, further evaluation of the model against larger clusters includ-

ing those containing multiple vacancies needs to be performed. Nevertheless

the present simulations suggest that the approach will be useful for describ-

ing fluorite systems with low dopant concentrations (i.e. <1%) where for

entropic reasons it is unlikely that larger clusters will form in significant

numbers. Conversely, for systems with a different crystallography the possi-

bility of defect clusters with off-lattice site defects (interstitials) would make

this approach much more difficult due to the larger number of ill defined

configurations.




