
Chapter 4

Intrinsic Defects and Defect

Concentrations in MgAl2O4

Spinel

4.1 Introduction

MgAl2O4 spinel is an important industrial ceramic with a range of applica-

tions that take advantage of its refractory and radiation tolerance proper-

ties [39]. Such materials will contain lattice defects which will influence their

mechanical and optical properties. This is particularly relevant when used

within radioactive environments, as bombardment by ionising radiation will

lead to elevated defect concentrations.
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The structure of normal spinel was shown in figure 3.1. If the O2− ions

are considered to form a face centred array, within the unit cell, Mg2+ ions

occupy tetrahedral interstices between O2− ions, the smaller Al3+ ions are

sited in octahedral interstices. These cation sublattices only partly fill the

available interstices and the remaining positions are generally considered to

accommodate interstitial ions [114]. As we shall see, however, the structure

of the interstitial species can be more complex then assumed in such a simple

model.

A second simplification that has been made in the above description of spinel

is that all 8a tetrahedral sites are occupied by Mg2+ and all 16d octahedral

sites are occupied by Al3+. As was shown in chapter 3 there is a degree of

disorder between the two sites so that some tetrahedral sites are occupied by

Al3+ ions and some octahedral sites are occupied by Mg2+ ions. The cation

disorder process can be described using the following equation:

Mg×Mg + Al×Al →Mg′Al + Al·Mg (4.1)

where, for example, Al×Al indicates an Al3+ ion at an octahedral 16d site

and Al·Mg indicates an Al3+ ion at a tetrahedral 8a site. Since the 8a site

is occupied, in a perfect normal spinel, by Mg2+, the substitution of an

Al3+ ion results in charge disparity of positive one. The value of i also de-

pends on processing conditions, temperature and pressure but values between

0.05 ≤ i ≤ 0.33 are generally accepted [97]. In this study we use computer

simulation (in particular the CASCADE code [121]) to investigate the struc-

ture of isolated and clustered intrinsic defects and obtain an estimate of their
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relative formation energies.

4.1.1 Mass Action Analysis

A recent paper by Smith et al. [108] predicted the residual defects formed

by collision cascades in MgAl2O4 spinel. Using the Mott-Littleton approach

as described in section 2.7 the structure and formation enthalpies of these

defects have been calculated and are presented in this chapter. As well as

the energies associated with the different intrinsic defect processes.

These enthalpies are used in conjunction with a complete set of mass action

equations [133,134] to calculate defect concentrations for spinel. These mass

action equations are solved simultaneously using Newtons method in 2D

(discussed along with other techniques by Broyden [135]). The iterative

process is terminated once the variation in defect concentrations between

consecutive cycles is less than 10−18.

Defect association reactions were discussed in section 1.1.3 these form the

basis of the analysis used in sections 4.2.1 and 4.2.2 of this chapter. Mass

action analysis [133, 134] relates the energy associated with a given defect

equilibrium to the relevant equilibrium defect concentrations. As an example,

the mass action equation associated with the antisite reaction (equation 4.1)

is of the form,

[Mg′Al][Al·Mg] = exp

(
−Hequ4.1

kT

)
(4.2)

where ∆Hequ4.1 is the predicted internal energy of equation 4.1, k is Boltz-
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mann’s constant and T , the temperature. Provided that this reaction is the

dominant means of forming both the Mg′Al and Al·Mg defects in MgAl2O4 then

electroneutrality requires that,

[Mg′Al] = [Al·Mg] (4.3)

combining equations 4.2 and 4.3 yields an expression for the concentrations

of each constituent defect type, these are, for Mg′Al,

[Mg′Al] = exp

(
−Hequ4.1

2kT

)
(4.4)

and for Al·Mg,

[Al·Mg] = exp

(
−Hequ4.1

2kT

)
(4.5)

There are some approximations associated with this type of calculations.

First, the energy calculated for equation 4.1 relies on the point defect model,

in real ceramics defects are able to interact in such a way as to reduce the

total energy of the system. This implies that the real concentrations will be

higher than those calculated. Second, there are many competing processes

associated with the concentrations of defects in a solid, thus while equation

4.1 may be the dominant reaction concerning the formation of Mg′Al and Al·Mg

defects the actual concentrations will depend on how these defects interact

with all other defect species within the lattice. In order to eliminate this

problem a set of equilibria may be solved simultaneously in such a way as to
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provide an internally consistent set of concentrations.

As with almost all calculations relying on a full charge model the defect

energies calculated here will tend to overestimate the real values. This in

turn means that calculated concentrations will be lower than implied by

experiment.

4.2 Intrinsic Defects

4.2.1 Isolated Defects

There are five distinct defect equilibria associated with the formation of in-

trinsic defects in MgAl2O4 these comprise the antisite process, equation 4.1,

the magnesium, aluminium and oxygen Frenkel processes, equations 4.6 - 4.8

and the Schottky process, equation 4.9.

Mg×Mg
⇀↽ Mg··i + V′′

Mg (4.6)

Al×Al
⇀↽ Al···i + V′′′

Al (4.7)

O×
O

⇀↽ O′′
i + V··

O (4.8)

Mg×Mg + 2Al×Al + 4O×
O

⇀↽ V′′
Mg + 2V′′′

Al + 4V··
O + MgAl2O4 (4.9)

Table 4.1 displays the calculated defect energies for isolated defects in MgAl2O4.

These comprise cation and anion vacancies and interstitials as well as cation

antisite defects.
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Table 4.1: Isolated defect energies (eV) in MgAl2O4, with and without shells

(note the interstitial ions have split configurations).

Species Energy with shells Energy without shells

V··
O 25.00 25.48

V′′
Mg 26.70 28.09

V′′′
Al 56.49 57.00

O′′
i -14.01 -12.99

Mg··i -15.78 -15.72

Al···i -42.64 -41.91

Al·Mg -28.53 -28.40

Mg′Al 29.99 29.94

It might be expected that the cation interstitial ions would lie at the unoccu-

pied 8b interstices, however, recent molecular dynamics calculations by Smith

et al. [108] suggest that the interstitials have more complex split structures:

oxygen is found to form a split O′′
i − V··

O − O′′
i complex aligned along 〈11̄0〉

(figure 4.1), similarly magnesium forms a split Mg··i − V′′
Mg − Mg··i complex

also along either 〈110〉 or 〈11̄0〉 (figure 4.2) depending on the local oxygen

positions. Aluminium does not form a split configuration about an octahe-

dral site, however an Al···i − V′′
Mg −Mg··i complex (figure 4.3), with an Al3+

ion taking the place of one Mg2+ ion in the magnesium split cluster, is stable

and energetically favoured compared to an isolated interstitial Al3+ at an

unoccupied tetrahedral interstice. As with the magnesium case interstitials

form in both 〈110〉 or 〈11̄0〉 directions, but as the two ions are no longer iden-



CHAPTER 4. DEFECTS IN MGAL2O4 SPINEL 107

tical there are additionally distinct splits in 〈1̄1̄0〉 and 〈1̄10〉 directions. As

a convention, the directions for this split structure will refer to the direction

from the magnesium to the aluminium ion throughout.
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Figure 4.1: Two diagrams showing the structure of the O′′
i − V··

O − O′′
i split

oxygen interstitial. The now vacant oxygen site is indicated in the upper

diagram by the transparent red cube and it is from this perfect lattice point

that the angle between the two oxygen ions is measured in the lower diagram.
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Figure 4.2: Two diagrams showing the structure of the Mg··i − V ′′
Mg − Mg··i

split magnesium interstitial. The now vacant magnesium site is indicated in

the upper diagram by the transparent yellow cube and it is from this point

that the angle between the two magnesium ions is measured in the lower

diagram.
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Figure 4.3: Two diagrams showing the structure of the Al···i −V ′′
Mg−Mg··i split

aluminium interstitial. Note how the Al3+ interstitial has displaced a lattice

Mg2+ ion into an adjacent interstitial site leaving behind a vacant tetrahedral

site (as in figure 4.2)

.

Using the energies reported in table 4.1 we can predict the energies for equa-

tions 4.1 - 4.9, these are as reported in table 4.2 and have been normalised
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per defect formed.

Table 4.2: Normalised defect energies (eV) for intrinsic defect processes,

isolated defects, with and without shells.

Process Defect energy (shells) Defect energy (no shells)

Schottky 5.32 5.99

O Frenkel 5.50 6.25

Mg Frenkel 5.46 6.19

Al Frenkel 6.93 7.55

Cation antisite 0.73 0.77

Mg··i + V′′′
Al + Al·Mg 5.73 6.05

Al···i + V′′
Mg + Mg′Al 6.66 7.68

Chapter 3 focused on cation disorder on the assumption that cation disorder

is by far the most common type of defect in the MgAl2O4 lattice. Table 4.2

confirms that we predict this to be the case.

While antisite disorder is found to be much more common than other types

the Schottky, oxygen Frenkel and magnesium Frenkel disorder energies are

sufficiently close that this simulation technique is unable to differentiate be-

tween them. This picture is similar to calculations cited by Chiang et al. [136]

which suggest energies in the range 4.5 - 7eV. Energies derived from diffusion

data seem, however, to predict lower values, 3.74eV for V′′
Mg diffusion [137],

4.55±0.69 eV for oxygen diffusion [138] and 2.0-3.2eV for Frenkel defect for-

mation [139]. These numbers are substantially lower than those predicted

through isolated defect formation, especially as the diffusion numbers contain
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not only the defect formation energy but also the defect migration energy

(as was discussed in section 1.1.4).

As it is relatively energetically favourable to form antisite defects, the follow-

ing equilibria should be considered (equations 4.10 - 4.13). In each case, we

are considering how defects formed through Schottky or Frenkel equilibria

interact with existing cation antisite defects.

V′′′
Al + Al·Mg

⇀↽ Al×Al + V′′
Mg (4.10)

V′′
Mg + Mg′Al

⇀↽ Mg×Mg + V′′′
Al (4.11)

Mg··i + Al·Mg
⇀↽ Mg×Mg + Al···i (4.12)

Al···i + Mg′Al
⇀↽ Al×Al + Mg··i (4.13)

Formation energies on the left hand sides of equations 4.10 - 4.13 are listed in

table 4.3 (it is stressed that these numbers are simply the sum of the relevant

energies listed in table 4.1 rather than the energy of a cluster comprised of

those defects). Interestingly a combination of isolated Mg··i and Al·Mg defects

is lower in energy than an Al···i (i.e. the left hand side of equation 4.12 is

prefered over the right hand side).

To determine if reaction 4.12 will yield a significant defect population of Mg··i

the following mass action equation should be considered

[Al···i ]

[Mg··i ][Al·Mg]
= exp

(
−∆H

kT

)
(4.14)
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Table 4.3: Combinations of isolated defect energies (eV), examples are for

calculation with shells on the O2− ions.

Species Energy Internal energies (Eq. 4.10 - 4.13) Equivalent species

V′′′
Al + Al·Mg 27.96 1.26 V′′

Mg

V′′
Mg + Mg′Al 56.69 0.20 V′′′

Al

Mg··i + Al·Mg -44.31 -1.67 Al···i

Al···i + Mg′Al -12.65 3.13 Mg··i

where ∆H = 1.67 eV (with shells). However, [ Al·Mg] is controlled by the

antisite reaction (equation 4.1). Thus,

[Mg′Al] = [Al·Mg] = exp

(−0.73

kT

)
(4.15)

Combining this with equation 4.14 gives

[Al···i ] = [Mg··i ] exp

(−0.94

kT

)
(4.16)

Thus the concentration of Al···i is clearly depreciated with respect to [Mg··i ].

If we follow the equilibria for equation 4.13 it leads to the same numerical

conclusion.

The two vacancy reactions are also coupled through the cation antisite reac-

tion. Consequently, in both cases, using equation 4.11 we find,

[V ′′
Mg][Mg′Al]

[V ′′′
Al ]

= exp

(
0.2

kT

)
(4.17)
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and through the cation antisite reaction,

[V ′′
Mg] = [V ′′′

Al ] exp

(
0.93

kT

)
(4.18)

Thus the cation antisite equilibrium leads to the conclusion that the V′′
Mg

concentration is substantially greater than the V′′′
Al concentration.

The relations 4.10 - 4.13 suggest some other possible intrinsic reactions,

Mg×Mg + Al×Al
⇀↽ Mg··i + V′′′

Al + Al·Mg (4.19)

Mg×Mg + Al×Al
⇀↽ Al···i + V′′

Mg + Mg′Al (4.20)

The energies for these process can be obtained in a similar way to that

used for equations 4.10 - 4.13. Equation 4.19 corresponds to the following

equilibrium,

[V ′′′
Al ][Mg··i ][Al·Mg] = exp

(−12.18

kT

)
(4.21)

combining this with equation 4.15 yields,

[V ′′′
Al ] = [Mg··i ] = exp

(−5.73

kT

)
(4.22)

Both these processes are similar in energy to the Frenkel reactions they re-

place, Al′′′i formation via equation 4.20 being marginally lower than via its

Frenkel reaction (equation 4.7).

Additionally it is possible for a ‘partial Schottky’ reaction to occur, in which

a formula unit of either MgO or Al2O3 is formed. The energies of these

processes are presented in table 4.4 and are similar in magnitude to the

Schottky and oxygen/magnesium Frenkel reactions discussed previously.
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Table 4.4: Normalised formation energies (eV) for a singular formular unit

of MgO and Al2O3 via ’partial Schottky’ assuming isolated defect formation,

with and without shells.

Process Per defect energy (shells) Per defect energy (no shells)

MgO formation 5.26 6.20

Al2O3 formation 5.46 5.96

Mass Action Calculations

Ignoring the possibility of defect clustering there are, in MgAl2O4 spinel,

eight distinct defect species comprising, three vacancies, the three corre-

sponding interstitials and the two cation antisite species. In order to solve

simultaneously for the concentrations a minimum of eight equations are re-

quired. Seven of these (equations 4.23-4.29) are mass action equations cor-

responding to the intrinsic defect reactions, equations 4.1-4.9 and 4.10-4.13.

The final equation arises out of requiring electroneutrality for the system be

maintained. In practice this requires setting Z+ ≡ Z− in equations 4.30 and

4.31. It was found that this series of equations is not sufficient to ensure

that vacancies (subtracting those arising from Frenkel defects) are created in

such a way as to maintain stoichiometry between anion and the two cation

species, hence an additional condition, equation 4.32 was imposed.

[Mg′Al][Al·Mg] = exp

(−Heqn4.1

kT

)
(4.23)
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[Mg··i ][V
′′
Mg] = exp

(−Heqn4.6

kT

)
(4.24)

[Al···i ][V′′′
Mg] = exp

(−Heqn4.7

kT

)
(4.25)

[V··
O][O′′

i ] = exp

(−Heqn4.8

kT

)
(4.26)

[V′′
Mg] [V′′′

Al]
2[V··

O]4 = exp

(−Heqn4.9

kT

)
(4.27)

[V ′′
Mg]

[V ′′′
Al ][Al·Mg]

+
[Al···i ]

[Mg··i ][Al·Mg]
= exp

(−Heqn4.10

kT

)
+ exp

(−Heqn4.12

kT

)
(4.28)

[V ′′′
Al ]

[V ′′
Mg][Mg′Al]

+
[Mg··i ]

[Al···i ][Mg′Al]
= exp

(−Heqn4.11

kT

)
+ exp

(−Heqn4.13

kT

)
(4.29)

Z+ = 3[Al···i ] + 2[Mg··i ] + 2[V··
O] + [Al·Mg] (4.30)

Z− = 3[V′′′
Al] + 2[V′′

Mg] + 2[O′′
i ] + [Mg′Al] (4.31)

[V··
O]− [O′′

i ] =
4

3

(
[V′′′

Al] + [V′′
Mg]− [Al···i ]− [Mg··i ]

)
(4.32)
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The results of solving these equations are shown in figure 4.4 for temperatures

in the range 1000K-2000K. The dominance of the two antisite defects is

immediately obvious, their concentrations throughout the range being more

than 10 orders of magnitude higher than those of any other defect. Of the

remaining defect species the vacancies are somewhat (or in the case of V′′′
Al,

greatly) more numerous than their respective interstitials. This is expected

as table 4.2 shows the Schottky process to be favoured with respect to the

anion and cation Frenkel reactions. Though not discernable on the scale of

figure 4.4 the concentrations of the two antisite defects are not equal. [Mg′Al]

is depleted slightly with respect to [Al·Mg] indicating that equations 4.28 and

4.29 are having a measurable effect on the calculation. These processes also

provide a likely explanation for the [V′′
Mg] being calculated to be higher than

that of the [V′′′
Al] contrary to what might be expected from consideration of

the Schottky process alone.

4.2.2 Clustered Defects

While isolated defects may provide a good approximation to defect equilibria

at low defect concentrations, at high defect concentrations oppositely charged

defects species will form locally charge compensating cluster configurations.

The huge concentrations of antisite defects relative to the various intersti-

tial and vacancy species force us to consider an interesting assumption; that

these antisites are so common in the lattice that all interstial and vacancy

defects inevitably form charge compensated clusters where it is an energet-
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Figure 4.4: Intrinsic defect concentrations for MgAl2O4 spinel for tempera-

tures in the range 1000K-2000K.

ically favourable process, i.e. that configurational entropy will not have a

significant role in determining the extent of cluster formation.

Table 4.5 shows the calculated absolute and binding energies for clusters con-

sisting of a single vacancy (or interstitial) defect with a number of the oppo-

sitely charged antisite defects. For each vacancy and/or interstitial species

the highest binding energy per defect is for the trimer defect. This is the

neutral cluster in the case of oxygen and magnesium vacancies and inter-

stials but singly charged in the aluminium defect containing clusters. For

each cluster all first and second neighbour geometric configurations were in-

vestigated, where a second neighbour configuration was lower in energy the

binding energies for third neighbour configurations were also studied.
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Table 4.5: Cluster defect and binding energies (BE) (eV), with and without

shells. Negative binding energy equates to a bound cluster.

Cluster Energy (shells) BE (shells) Energy BE

{V··
O:Mg′Al}· 53.43 -1.55 53.58 -1.85

{V··
O:2Mg′Al}× 82.48 -4.19 82.94 -2.42

{V′′
Mg:Al·Mg}′ -2.57 -0.74 -1.21 -0.90

{V′′
Mg:2Al·Mg}× -32.13 -1.41 -30.02 -1.30

{V′′′
Al:Al·Mg}′′ 26.27 -1.39 26.87 -1.72

{V′′′
Al:2Al·Mg}′ -3.17 -2.60 -3.01 -3.20

{V′′′
Al:3Al·Mg}× -32.39 -3.29 -32.36 -4.15

{O′′
i :Al·Mg}′ -44.26 -1.73 -43.75 -2.35

{O′′
i :2Al·Mg}× -73.76 -2.70 -73.59 -4.57

{Mg··i :Mg′Al}· 13.18 -1.03 13.05 -1.17

{Mg··i :2Mg′Al}× 42.42 -1.77 42.06 -2.10

{Al···i :Mg′Al}·· -14.16 -1.51 -13.67 -1.70

{Al···i :2Mg′Al}· 14.89 -2.45 15.03 -2.94

{Al···i :3Mg′Al}× 44.44 -2.88 44.52 -3.39

{Mg′Al:Al·Mg}× 0.98 -0.48 0.94 -0.60
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Considering the trimer defects we can propose a series of reactions analagous

to the Frenkel and Schottky processes these are equations 4.33 - 4.36:

2Mg′Al + 2Al·Mg + Mg×Mg
⇀↽ {Mg··i :2Mg′Al}× + {V′′

Mg:2Al·Mg}× (4.33)

2Mg′Al + 2Al·Mg + Al×Al
⇀↽ {Al···i :2Mg′Al}· + {V′′′

Al:2Al·Mg}′ (4.34)

2Mg′Al + 2Al·Mg + O×
O

⇀↽ {O′′
i :2Al·Mg}× + {V··

O:2Mg′Al}× (4.35)

8Mg′Al + 6Al·Mg + Mg×Mg + 2Al×Al + 4O×
O

⇀↽ {V′′
Mg:2Al·Mg}× +

2{V′′′
Al:2Al·Mg}′ + 4{V··

O:2Mg′Al}× + MgAl2O4 (4.36)

Similarly for the dimer defects:

Mg′Al + Al·Mg + Mg×Mg
⇀↽ {Mg··i :Mg′Al}· + {V′′

Mg:Al·Mg}′ (4.37)

Mg′Al + Al·Mg + Al×Al
⇀↽ {Al···i :Mg′Al}·· + {V′′′

Al:Al·Mg}′′ (4.38)

Mg′Al + Al·Mg + O×
O

⇀↽ {O′′
i :Al·Mg}′ + {V··

O:Mg′Al}· (4.39)

4Mg′Al + 3Al·Mg + Mg×Mg + 2Al×Al + 4O×
O

⇀↽ {V′′
Mg:Al·Mg}′ +

2{V′′′
Al:Al·Mg}′′ + 4{V··

O:Mg′Al}· + MgAl2O4 (4.40)

and in the case of the aluminium vacancies/interstitials for tetramer clusters:

3Mg′Al + 3Al·Mg + Al×Al
⇀↽ {Al···i :3Mg′Al}× + {V′′′

Al:3Al·Mg}× (4.41)

Table 4.6 lists the intrinsic defect process energies as a function of clustering

level. The picture at the trimer level of clustering is qualitatively similar to

that for isolated defects with the Schottky and oxygen Frenkel the dominant
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processes. In contrast to the isolated case the Mg Frenkel process is signifi-

cantly higher in energy than the Schottky and the oxygen Frenkel processes.

The clustered energies are throughout significantly lower than for isolated

defects, the effect of this on overall defect concentration will be discussed

in the following section where the mass action treatment of section 4.2.1 is

revised to include the trimer clusters.

In addition to the antisite containing clusters discussed above, a range of va-

cancy and interstitial dimers might also be present in defective spinel. Table

4.7 comprises a list of potential dimer clusters, their associated formation

energies and the cluster binding energies. As with the calculations in section

4.2.1 these have been repeated with and without shells on the O2− ions. As

in the previous section for each cluster all first and second neighbour configu-

rations were investigated, where a second neighbour configuration was lower

in energy the binding energies for third neighbour configurations were also

studied.

Though table 4.7 shows all vacancy clusters {V··
O:V′′

Mg}× and {V··
O:V′′′

Al}′ to

have large binding energies, the loss of configurational entropy is such, how-

ever, that at the dilute limit, the Schottky energy is lower assuming isolated

defects as opposed to clustered vacancies, as shown in table 4.8. Similarly

the predicted energies for the ‘partial Schottky’ reactions (in table 4.9) are

not lower assuming vacancy cluster formation than for the isolated defect

case.
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Table 4.6: Normalised energies for pseudo-equilibrium intrinsic defect pro-

cesses, assuming both isolated and clustered defects, with and without shells

and that antisites are already present in the lattice such that the antisite

formation energy does not contribute the the defect process energies.

Process & clustering Energy (shells) Energy (no shells)

Mg Frenkel

Isolated (eqn. 4.6) 5.46 6.19

Dimer clusters (eqn. 4.37) 4.57 5.15

Trimer clusters (eqn. 4.33) 3.69 4.57

Al Frenkel

Isolated (eqn. 4.7) 6.93 7.54

Dimer clusters (eqn. 4.38) 5.48 5.83

Trimer clusters (eqn. 4.34) 3.81 4.47

Tetramer clusters (eqn. 4.41) 3.89 tba

O Frenkel

Isolated (eqn. 4.8) 5.50 6.25

Dimer clusters (eqn. 4.39 3.86 4.15

Trimer clusters (eqn. 4.35) 2.91 3.14

Schottky

Isolated (eqn. 4.9) 5.32 5.99

Dimer clusters (eqn. 4.40) 3.93 4.31

Trimer clusters (eqn. 4.36) 2.90 3.50
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Table 4.7: Cluster defect and binding energies (BE) (eV), with and without

shells. Positive binding energy equates to a bound cluster.

Cluster Energy (shells) BE (shells) Energy BE

{Mg··i :O
′′
i }× -31.70 -1.91 -30.88 -2.17

{Al···i :O′′
i }· -60.17 -3.53 -60.34 -5.44

{Mg··i :Al·Mg:O
′′
i }· -60.17 -3.53 -60.34 -5.44

{V··
O:V′′

Mg}× 47.64 -4.06 49.00 -4.57

{V··
O:V′′′

Al}′ 76.82 -4.67 77.13 -5.35

{Mg··i :V
′′′
Al}′ 37.80 -2.91 37.80 -3.48

{Al···i :V′′
Mg}· -17.76 -1.83 -16.00 -2.18

{Mg′Al:Al·Mg}× 0.98 -0.48 0.94 -0.60

Table 4.8: Normalised defect process energies (eV), clustered defects, with

and without shells.

Process Energy (shells) Energy (no shells)

Schottky 5.961 6.66

Cation antisite 0.98 0.94

Mg··i + V′′′
Al + Al·Mg 3.09 3.13

Al···i + V′′
Mg + Mg′Al 4.07 4.65

Table 4.9: Normalised defect process energies for MgO and Al2O3 formation,

clustered defects, with and without shells.

Process Energy (shells) Energy (no shells)

MgO formation 6.46 7.82

Al2O3 formation 5.99 6.37
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Mass Action Calculations

Table 4.6 shows that the intrinsic defect process energies fall when it is as-

sumed that the vacancy and interstitial defects form clusters with existing

charge compensating antisite defects. This assumes that the antisite defects

are available, the total formation energies to form the clusters from the per-

fect lattice is greater by 0.73 eV, when the shell model is used for oxygen

and 0.77 eV when it is excluded. Even when this is added on, however, it is

clear that in each case the trimer cluster’s formation energy is lower than the

corresponding dimer, which is in turn lower than the corresponding isolated

process energy.

In section 4.2.1 mass action analysis was used to evaluate the relative de-

fect concentrations of isolated intrinsic defects in MgAl2O4. This analysis

can, in principle be extended to cover all possible defect equilibria, however

due to the difficulty of simultaneously solving for many unknowns the re-

sults presented here include only the isolated and trimer defects. In addition

to the mass action equations accounting for the formation of the isolated

defects (equations 4.23-4.29) further equations are needed to govern the for-

mation/dissolution of each trimer cluster. The defect equilibria are:

V′′
Mg + 2Al·Mg

⇀↽{V′′
Mg:2Al·Mg}× (4.42)

Mg··i + 2Mg′Al
⇀↽ {Mg··i :2Mg′Al}× (4.43)

V′′′
Al + 2Al·Mg

⇀↽ {V′′′
Al:2Al·Mg}′ (4.44)
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Al···i + 2Mg′Al
⇀↽ {Al···i :2Mg′Al}· (4.45)

V··
O + 2Mg′Al

⇀↽ {V··
O:2Mg′Al}× (4.46)

O′′
i + 2Al·Mg

⇀↽ {O′′
i :2Al·Mg}× (4.47)

Which have the corresponding mass action equations:

[{V′′
Mg:2Al·Mg}×]

[V′′
Mg][Al·Mg]

2 = exp

(−Heqn4.42

kT

)
(4.48)

[{Mg··i :2Mg′Al}×]

[Mg··i ][Mg′Al]
2 = exp

(−Heqn4.43

kT

)
(4.49)

[{V′′′
Al:2Al·Mg}′]

[V′′′
Mg][Al·Mg]

2 = exp

(−Heqn4.44

kT

)
(4.50)

[{Al···i :2Mg′Al}·]
[Al···i ][Mg′Al]

2 = exp

(−Heqn4.45

kT

)
(4.51)

[{V··
O:2Mg′Al}×]

[V··
O][Mg′Al]

2 = exp

(−Heqn4.46

kT

)
(4.52)

[{O′′
i :2Al·Mg}×]

[O′′
i ][Al·Mg]

2 = exp

(−Heqn4.47

kT

)
(4.53)

The charge transfer equation, Z+ ≡ Z−, is also complicated by the introduc-

tion of the trimer cluster, the left hand side is now:

Z+ = 3[Al···i ] + 2[Mg··i ] + 2[V··
O] + [{Al···i :2Mg′Al}·] + [Al·Mg] (4.54)
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and the right hand side:

Z− = 3[V′′′
Al] + 2[V′′

Mg] + 2[O′′
i ] + [{V′′′

Al:2Al·Mg}′] + [Mg′Al] (4.55)

Finally, in order to ensure stoichiometric vacancy production, an analog of

equation 4.32 must be used as a constraint:

([V··
O] + [{V··

O:2Mg′Al}×])− ([O′′
i ] + [{O′′

i :2Al·Mg}×]) =

4

3
{([V′′′

Al] + [{V′′′
Al:2Al·Mg}′] + [V′′

Mg] + [{V′′
Mg:2Al·Mg}×])

−([Al···i ] + [{Al···i :2Mg′Al}·] + [Mg··i ] + [{Mg··i :2Mg′Al}×])} (4.56)

Solving these fifteen equations in the same temperature range as in figure 4.4

produces the results displayed in figure 4.5. The impact of clustering is sig-

nificant: whereas in the isolated case the highest concentration predicted for

vacancy/interstitial defects is ∼ 10−13; when clustering is taken into account

this rises to ∼ 10−10. The assumption that the vacancies/interstitials are

clustered is also supported: at its smallest, the difference between the con-

centration of clustered and unclustered states for a particular defect (V′′
Mg) is

an order of magnitude, where it is greatest (V··
O) the clustered defect concen-

tration is 8 orders of magnitude higher than for the corresponding isolated

defect. As with the isolated defect case no one species clearly dominates,

although V··
O defects are the most frequent, the difference in concentration

between those and V′′′
Al and O′′

i is less than an order of magnitude.
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Figure 4.5: Intrinsic defect concentrations for MgAl2O4 spinel for tempera-

tures in the range 1000K-2000K. Including isolated defects and trimer clus-

ters.

4.3 Summary

Though MgAl2O4 is typically described as a normal spinel, i.e. all the Mg

ions are occupy tetrahedral sites and Al ions octahedral sites, previous simu-

lations [97] and experimental data [34] indicate a propensity to accommodate

a degree of inversion on the cation lattice. It is thus unsurprising that for-

mation of such antisite defects, via equation 4.1, is found to be the dominant

intrinsic process. The presence in the lattice of a high concentration of an-

tisite defects is predicted to have significant impact upon the equilibrium

defect concentrations. Mass action calculations find that almost all vacancy

and interstitial defects will, at equilibrium, be clustered with charge com-

pensating defects. Exempting the antisite reaction, the Schottky and oxygen
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Frenkel processes are lowest in energy and thus give rise to the most common

defect species.




