
Chapter 2

Methodology

2.1 The Perfect Lattice

The description of the perfect lattice used in this work is derived from the

classical Born model of solids [54, 55], in which the lattice is constructed as

an effectively infinite array of charged, spherical ions.

Atoms, within a crystal, experience interactions with all other atoms within

the structure. The general form of this interaction may be written as the

series summation:

Ψ(r1...rn) =
n∑

i,j=1

Ψ2(rij) +
n∑

i,j,k=1

Ψ3(rijk) +
n∑

i,j,k,l=1

Ψ4(rijkl) (2.1)

where Ψ2(rij) is the interaction between pairs of ions {ij}, Ψ3(rijk) the in-
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teraction between triplets of ions {ijk} etc. The nature of the expansion

in equation 2.1 requires that it be truncated so as to be computationally

tractable. In highly ionic materials pair interactions dominate and conse-

quently the expansion is truncated after the first term [56]. This is the pair

potential approximation and ensures that the interactions between ions can

be described via a central force. The approximate total interaction is now

Ψa(r1...rn) =
n∑

i,j=1

Ψ2(rij) (2.2)

The species Ψ2(rij) in equation 2.2 is the potential energy between ions i

and j, and is subsequently written E(rij). The form of this pair potential is

an important factor in deciding the effectiveness of the model. The charged

nature of the ionic species give rise to a Coulombic interaction; the rela-

tively slow decay of 1
r

with increasing r means that this forms the long range

component of the potential. The total potential is written:

E(rij) =
1

4πε0

qiqj

rij

+ φsr (2.3)

where ε0 is the permittivity of free space, qi and qj are the charges on ions i

and j respectively and rij is their separation. The second term, φsr, describes

any remaining, short-range interaction. This interaction is shown schemati-

cally in figure 2.1 for the case of two oppositely charged ions. Having defined

the interaction between any two ions these can be summed to give the lattice

energy, EL:
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EL =
∑
j>i

∑
i

(
1

4πε0

qiqj

rij

+ φsr

)
(2.4)
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Figure 2.1: Total interaction energy between two oppositely charged ions

showing the breakdown into long and short range components.

2.2 Ewald Method

The long range nature of the Coulomb term in equation 2.3 is highly incon-

venient from a modelling perspective. The spatial interaction arising from

this term typically falls off no faster than ∼ r−d [57, 58] where d is the di-

mensionality of the system under consideration. This relatively slow decay

precludes the truncation of the first term in equation 2.4 and is instead here

overcome via applying the method due to Ewald [59].

Ewald derived a technique which sums the interactions between an ion and its

array of periodic images. The original derivation is mathematically complex
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and so the following treatment is a simplification owing much to Kittel [60]

(and therein attributed to an unpublished paper of Shockley and Ewald).

In the following derivation the lattice is assumed to consist of non-overlapping,

spherical ions of positive or negative charge. The total potential at a given

lattice point is written as:

ψ = ψ1 + ψ2 (2.5)

where the potential ψ1 is that of a lattice with a Gaussian charge distribution

at each lattice point, with signs as in the real lattice. The potential ψ2 is that

of a lattice of point charges with an additional Gaussian charge distribution

of opposite sign superimposed upon these point charges. When these two

components are combined as in equation 2.5 they reduce to the original set

of point charges. The point of splitting ψ in this way is that a parameter,

η, can be optimised to determine the width of the Gaussian peaks such that

both parts converge rapidly and independently. An optimum value for this

width, determined by Catlow and Norgett [61], is:

η =

(
Nπ3

V 2

)
(2.6)

where N is the total number of charges and V is the unit cell volume. The

definition of the Madelung constant dictates that the charge distribution at

the reference point does not contribute to potentials ψ1 and ψ2, that is to

say, ions do not experience their own electrostatic potential. It is therefore
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convenient to describe ψ1 as the difference:

ψ1 = ψa − ψb (2.7)

between ψa, the potential of a continuous series of Gaussian distributions

and ψb the potential of a single charge distribution at the reference point.

ψa and its associated charge density, ρ can be expanded in terms of Fourier

series:

ψa =
∑
G

cGei(G.r) (2.8)

ρ =
∑
G

ρGei(G.r) (2.9)

where cG and ρG are coefficients and G is 2π times the set of reciprocal

lattice vectors. The series converge as G increases and the magnitude of

the coefficients decrease. The electrostatic potential is related to its charge

distribution through Poisson’s equation:

∇2ψa = −4πρ (2.10)

and so:

cG = 4πρG/G2 (2.11)
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The Gaussian charge distribution for an ion, j, with charge qj and half width
(

ln2
η

) 1
2

is:

ρ = qj

(η

π

) 3
2
e−ηr−2

(2.12)

To evaluate ρk now multiply both sides of equation 2.9 by e−i(G.r) and in-

tegrate over the volume V of a single unit cell. In this case the charge

distribution is that originating on the lattice points within the cell as well

as the tails of distributions arising from all other lattice points. The integral

of the total charge times e−i(G.r) over a single unit cell is equal, however, to

the integral of the charge density associated with a single lattice point times

e−i(G.r) over all space, so that:

ρGV = ρG

∫

V

ei(G.r)e−i(G.r)dr =
(η

π

) 3
2

∫

V∞

∑
t

qte
−η(r−rt)−2

e−i(G.r)dr (2.13)

This integral evaluates to:

ρGV =

(∑
t

e−i(G.r)

)
e−

G2

4η = S(G)e−
G2

4η (2.14)

where S(G) =
(∑

t e
−i(G.r)

)
is the structure factor of the unit cell under

consideration.

Substituting the above result into equation 2.8 via 2.11 gives:

ψa =
4π

V

∑
G

S(G)G−2ei(G.r)−G2

4η (2.15)
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The contribution to ψb, the potential at the reference point due to the central

Gaussian charge distribution is:

ψb =

∫ ∞

0

4πr2ρ(r)

r
dr =

2qi

ε0

(η

π

) 1
2

(2.16)

Combining equations 2.15 and 2.16 yields:

ψ1 =
4π

V

∑
G

S(G)G−2ei(G.r)−G2

4η − 2qi

ε0

(η

π

) 1
2

(2.17)

The potential ψ2 consists of contributions from the tails of all Gaussians,

other than that one centred on the reference point itself. The potential may

be partitioned into three separate contributions per lattice point: the point

charge associated with the ion j, situated at that lattice point, the part of

the Gaussian charge distribution centred on j and falling within a sphere of

radius rj about this lattice point and finally that part of the Gaussian charge

distribution centred on j that falls outside this sphere.

ψ2 =
1

4πε0

∑
j

qj

[
1

rj

− 1

rj

∫ rj

0

ρ(r)dr−
∫ ∞

rj

ρ(r)

r
dr

]
(2.18)

=
1

4πε0

∑
j

qj

rj

erfc(η
1
2 rj) (2.19)

where erfc(x ), the complimentary error function, is of the form:

erfc(x) =
2

π
1
2

∫ ∞

x

et2dt (2.20)
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Finally we can write:

ψ =
4π

V

∑
G

S(G)G−2ei(G.r)−G2

4η − 2qi

ε0

(η

π

) 1
2

+
1

4πε0

∑
j

qj

rj

erfc(η
1
2 rj) (2.21)

2.3 Short Range Interactions

While at intermediate and long ranges the interaction between charged ions

may effectively be modelled as though they were static point charges this ap-

proximation breaks down with reducing interionic separation. Consequently

we must define a potential φsr to account for the discrepancy. Within this

work the potential form used is that of the Buckingham potential model [62]:

φsr(rij) = Aij exp

(−rij

ρij

)
− C6,ij

r6
ij

(2.22)

where Aij, ρij and Cij are adjustable parameters. The Buckingham poten-

tial model has previously proved successful in modelling a variety of oxide

ceramics [67–70] This short-range interaction is composed of both attractive

and repulsive components. As the components of φsr(r) fall off rapidly with

increasing r, a cut-off of 20Å can safely be imposed beyond which the short

range forces are neglected.

The first, repulsive term in equation 2.22 accounts for interactions between

ions close enough that their electron clouds overlap. This overlap causes two

effects. Increased electron-electron repulsion decreases the energy density
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between the ions. The shielding of the two ion’s nuclei from one another is

reduced, increasing the potential energy of the system. The second effect

is a result of Pauli’s exclusion principle, which requires that the electrons

must occupy orthogonal orbitals. Within the linear combination of atomic

orbitals approximation excess energy density within the overlap must occupy

previously unoccupied orbitals, if the ions are considered closed shell then

these unoccupied orbitals are at higher energy. This increases the potential,

i.e. corresponds to a repulsive force between the ions.

The second term in equation 2.22 is attractive and describes the London

dispersion forces [71–74]. Even within a system whose time averaged charge

distribution is zero there may exist, at any instant, a net dipole moment.

If the ion i has an instantaneous dipole moment pi then at a distance r from

the ion this moment generates a field proportional to pi

r3 . This will in turn

induce a dipole moment in all other ions, such as ion j, proportional to the

field:

pj ∼ αpi

r3
ij

(2.23)

where α is the polarisability of the ion and rij the separation of the two ions.

Since the energy of interaction of two dipoles is proportional to the product

of the dipole moments divided by the cube of their separations the energy of

interaction, Ed is of the order:

Ed ∼ pipj

r3
ij

∼ αp2
i

r6
ij

= −C6,ij

r6
ij

(2.24)
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The parameter C6,ij may be calculated via the Slater-Kirkwood formulae [75]:

C6,ij =
3αiαj

2[(αi/Ki)
1
2 + (αj/Kj)

1
2 ]

(2.25)

where αi is the static dipole polarisability of ion i and Ki is its effective

electron number, that is the number of electrons contributing to the polaris-

ability. Values of α and K have been calculated by Grimes and Grimes and

can be found in [76,77].

2.4 Derivation of Model Parameters

The availability of good model parameters is critical to the success of any

simulation. Approaches for fitting model parameters can be partitioned into

two categories: empirical and non-empirical methods. Non-empirical meth-

ods (such as used in [78]) typically involve performing rigorous quantum me-

chanical calculations to evaluate the ion - ion interaction energy as a function

of separation. Parameters can then be chosen so as reproduce this energy

surface. A significant advantage of non-empirical techniques are that they

may be employed even where there is a paucity of the experimental data.

Empirical methods involve adjusting the available parameters so as to best

reproduce a set of the experimentally known properties of the material. These

properties will generally contain the lattice parameter and ionic positions and

may extend to include elastic and dielectric constants. A significant problem
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with fitting in this way is that the potential form is tested only at a single

point, consequently once defects are introduced to the lattice the potentials

may fail as they are now required to reproduce the interaction at a variety

of interionic radii. This limitation may be reduced by fitting a potential to

several structures, ensuring a degree of transferability. This method has been

used throughout this study and is illustrated for the O2−-O2− case in figure

2.2

Figure 2.2: Showing the range of interionic separations in the series of com-

pounds used in the fitting of the O2−-O2− potential.
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2.5 Electronic Polarisability

Ionic polarisability is introduced via the shell model of Dick and Over-

hauser [79]. Within this scheme the rigid ion core is replaced by two species,

a core and a rigid spherical shell. The shell has an effective mass of zero and

charge Y|e| and is connected to the massive core of charge X|e| by a harmonic

force of constant k (though in lattice statics simulations the mass plays no

part). The total charge of the ion is then (X + Y)|e|.

The shell is allowed to move relative to the core, forming a dipole, thus

simulating the dielectric response of the lattice. The ease by which such a

dipole can be formed i.e. the polarisability of the species is controlled by a

combination of the force constant k and the magnitude of the charges X and

Y. An isolated species has a polarisability αe given by,

αe =
1

4πε0

Y 2

k
(2.26)

The model parameters (X, Y and k) are fitted empirically to the dielectric and

elastic properties of the crystal. In particular the high frequency dielectric,

ε∞ is important as it arises as a consequence of the electronic polarisability

alone, whereas the static dielectric constant also has a contribution from the

ionic polarisation of the lattice.

The advantage of this model is that short range interactions are coupled to

the shell rather than to the core, as in the rigid ion approach. This more

complicated interaction introduces extra degrees of freedom into the relax-

ation allowing the lattice to find a more stable state. Some limitations still



CHAPTER 2. METHODOLOGY 54

exist however, in particular the shell model is unable to reproduce Cauchy

violation [80]. That is, calculations using this model (as well as the rigid ion

model) inevitably find, for materials with the rock salt structure, that the

elastic constants c12 and c44 are equal, in contrast with experimental evidence.

More elaborate shell models exist and they are able to correct this, although

are not used in this study. The breathing shell model which allows the shells

radius to vary can reproduce cases where c12 <c44 [81]. Values c12 >c44 can

be achieved through the use of an elliptically distorted shell [82].

2.6 Energy Minimisation

In practice, however well a potential model may be expected to reproduce the

observed lattice structure, the predicted lattice must first be subjected to a

process of energy minimisation. Within this scheme the system is minimised

iteratively by adjusting the positions of ions within the lattice until the force

upon them is reduced to zero:

∂UL

∂r
= 0 (2.27)

where UL is the lattice energy. The energy of the lattice consisting of N ions

with new coordinates, r′, can be defined in terms of its original set, r by:

U(r′) = U(r) + gT .δ +
1

2
δT .W.δ (2.28)

where δ is a generalised strain vector with 3N orthogonal displacement com-

ponents, δr and 6 bulk strain components δε. The vector g corresponds to
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the first derivatives of the lattice energy with respect to the ion displacements

and strain components:

g =

(
∂UL

∂r
,
∂UL

∂ε

)
(2.29)

The matrix W contains the corresponding second derivatives,

W =




∂2UL

∂r∂r
∂2UL

∂r∂ε

∂2UL

∂ε∂r
∂2UL

∂ε∂ε


 (2.30)

The new coordinates r′ are related to the original via:

r′ = ∆ε(r + δr) (2.31)

where ∆ε is the Voight matrix representation of the vector δε:

∆ε =




δε1
1
2
δε6

1
2
δε5

1
2
δε6 δε2

1
2
δε4

1
2
δε5

1
2
δε4 δε3




(2.32)

The system is relaxed iteratively, allowing the ion coordinates to adjust in

such a way as to reduce the lattice strain. Energy can be minimised by

varying only the internal cell ion coordinates, such that volume is constrained

or the lattice can be relaxed under constant pressure by allowing the cell

vectors to vary.

Minimising the lattice energy at constant volume requires that equation 2.28

be differentiated with respect to r. Now, when the lattice energy is min-
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imised:

∂UL

∂r′
= 0 (2.33)

=
∂UL

∂r′
+

∂gT

∂r
(2.34)

= g + Wδ (2.35)

so the optimum ion displacements to give minimum energy are:

δ = −W−1g (2.36)

To perform a constant pressure calculation the bulk strain must also be

minimised by relaxing the cell vectors. The bulk strain are defined such that

they transform each vector r in the lattice to r′ so that:

r′ = (I + ε).r (2.37)

where I is the identity matrix and ε the symmetric strain tensor defined by

equation 2.32. New positions and lattice vectors can then be calculated by

combining equation 2.37 with 2.31.

In practice the minimisation requires a number of iterations and typically

continues until the change in the total energy of the system is smaller that

some predetermined value. Several minimisation procedures can be applied,

the Newton-Raphson method [83] being one of these.

2.7 The Defective Lattice

The inclusion of a defect into the minimised perfect lattice will cause a per-

turbation to the surrounding ions, hence the lattice must undergo further
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relaxation and obtain a new minimum energy configuration. Although the

potential field associated with the defect will fall away slowly as 1
r

(assum-

ing that it is charged) it is found that the relaxation of ions close to the

defect acts to shield the outer ions (polarization). The amount of relaxation

therefore falls away rapidly with increasing separation from the defect. This

allows the lattice to be described by the multi-region approach of Mott and

Littleton [84].

Here, the lattice is partitioned into concentric spherical regions with the

defect, or cluster of defects placed at the centre. The defect is surrounded by

a sphere of ions, region I, initially arranged as in the perfect lattice geometry.

These ions are treated explicitly, that is their adjusted lattice positions are

shifted subject to the inter-atomic potentials defined in section 2.1. Beyond

region I lies region II, as lattice relaxation is considerably smaller further from

the defect a more approximate method can be used here. Within the Mott-

Littleton approach region II is further split into regions IIa and IIb. The ions

of region IIa are displaced according to forces described by the Mott-Littleton

approximation but interactions with ions in region I are calculated by explicit

summation. The positions of ions within region IIb, which extends to infinity,

are not altered in response to the defect, the energy of interaction with the

defect is determined directly from the Mott-Littleton approximation.

Within the Mott-Littleton approximation the crystal polarization P is de-

scribed in terms of the distance r at which a defect of charge q is situated:

P =
q

4πr

(
1− 1

ε

)
(2.38)
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where ε = εsε0. Individual displacements and their contribution to the total

energy can then be summed by applying this equation over the whole lattice

(or, rather that part of it treated within the Mott-Littleton approximation).

The total energy introduced to the lattice through the incorporation of a

defect, Ed, is then written as a sum of contributions from the different regions

such that:

Ed = E1(r) + E2(r, ζ) + E3(ζ) (2.39)

where E1 is the energy of region I, due to ions displaced to positions r within

this region. E2 is the energy of interaction between region I and region II and

is a function of both r and ζ the vector of coordinate displacements within

region II. E3 is the energy of region II.

E3 cannot be calculated exactly because it is the sum of an infinite number of

displacements. Relaxation in this region is limited so the harmonic approxi-

mation is acceptable and so E3 is a quadratic function of the displacements,

E3(ζ) =
1

2
ζ.A.ζ (2.40)

where A is the force constant matrix. Substituting this 2.38 and differenti-

ating with respect to the displacements in region II, ζ gives

∂E2(r, ζ)

∂ζ

∣∣∣∣
ζ=ζ′

= −A.ζ ′ (2.41)

where ζ ′ are the displacements in region II at equilibrium. Equation 2.39 can

now be written as

Ed = E1(r) + E2(r, ζ) +
ζ

2
.
∂E2(r, ζ)

∂ζ

∣∣∣∣
ζ=ζ′

(2.42)

Thus the dependence on E3 is removed.
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2.8 Thermal Equilibrium Monte Carlo Simu-

lation

The Mott-Littleton method detailed in section 2.7 allows us to evaluate the

structure and energy of point defects and small clusters. At equilibrium,

however, the defects in a material cannot simply be assumed to exist in

their lowest energy state. Instead the system will occupy the state µ with a

probability [86]

pµ =
1

Z
e
−Eµ
kT (2.43)

where Eµ is the energy of state µ, T is the system temperature and k is

Boltzmann’s constant. The quantity (kT )−1 is often denoted by the symbol β

and this convention shall be used from now on. pµ is known as the Boltzmann

probability and the distribution formed by all the pµ’s is called the Boltzmann

distribution. The normalisation constant Z is called the partition function

and is defined by:

Z =
∑

µ

e−βEµ (2.44)

where the sum is over all possible states of the system. The following will

be a general discussion of the key points behind Monte Carlo simulation, a

much more complete analysis can be found in many books including [85].

A system, in state µ will transform into a new state ν within a time dt with

probability R(µ → ν)dt. The quantity R(µ → ν) it the transition rate for

the transition from state µ to state ν.

We can define a set of weights, wµ(t) to represent the probability that the
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system will be in the state µ at a given time. The evolution of wµ(t) is then

described by a master equation:

dwµ

dt
=

∑
ν

[wνR(ν → µ)− wµR(µ → ν)] (2.45)

i.e., evolution is the difference between the rate at which the system is un-

dergoing transition into state µ and the rate at which it is transitioning out

of state µ.

These weights are important as they allow us to relate the transition states

to some macroscopic quantity Q. The expectation value of Q, written 〈Q〉,
is given by:

〈Q〉 =
∑

µ

Qµwµ(t) (2.46)

where Qµ is the value of Q in state µ. 〈Q〉 can be thought of as a time average

of Q, i.e. that it is to be expected, that if values of Q over a period of time

are recorded and averaged, they would after sufficient time reproduce the

real mean value of Q. In reality this is problematic as it may not be known

whether the system has had long enough to pass through a representative

series of states.

If after some time, t, the system is in a state such that the two terms on

the right hand side of equation 2.45 are equal, then dwµ

dt
will vanish and the

weights become constant, i.e. the system will have reached equilibrium. The

first order nature of equation 2.45 (as well as the fact the values of wµ(t) are

between 0 and 1) ensure that given enough time the system will eventually
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reach equilibrium. This allows us to redefine pµ:

pµ = lim
0→∞

wµ(t) (2.47)

and so for a system at equilibrium the expectation value of a quantity Q is:

〈Q〉 =
∑

µ

Qµpµ =

∑
µ Qµe

−βEµ

∑
µ e−βEµ

(2.48)

Unfortunately calculating the value of 〈Q〉 is only possible for small systems.

Monte Carlo techniques involve the random selection of some subset of states

M = {µ1, µ2...µM}, from the probability distribution pµ. The best estimate

of Q which can be achieved by considering only this subset of states is given

by:

QM =

∑M
i=1 Qµi

p−1
µi

e−βEµi

∑M
j=1 p−1

µj
e−βEµj

(2.49)

QM is called the estimator of Q, it provides a more accurate estimate as the

number of sampled states increases and in the limit of M → ∞ it recovers

exactly 〈Q〉. The problem which now arises is how to choose M so as to yield

an accurate estimate of 〈Q〉. It we knew which states contributed significantly

to the sums in equation 2.48 then we could pick M from only those states,

ignoring all the others. In this way we could gain an accurate measure of

〈Q〉 with a minimum number of terms in the summation. The selection of

an appropriate set of states in this way is called importance sampling.

The simplest way of selecting states would be to choose each state with equal

probability, however such a choice may well be a very poor one because clearly

the system will occupy lower energy states with greater frequency. In fact we

know that states occur with a Boltzmann probability as defined in equation
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2.43 so if states, M , are selected such that the probability of it being selected

is pµ = 1
Z
e−βEµ then a representative sample will be obtained (provided

that the sample is sufficiently large). Substituting 2.43 into 2.49 reduces the

estimator to the form:

QM =
1

M

M∑
i=1

Qµi
(2.50)

The selection of states according to their Boltzmann probabilities is difficult

and typically relies on what is known as a Markov process. A Markov process

is a system through which a new state ν is generated from its predecessor

µ. The probability that such an evolution occurs is defined by P (µ → ν),

this is the transition probability. These transition probabilities must be time

independent and be a function only of the states µ and ν. Additionally

the sum of all possible transitions from the state µ must be unity (though

P (µ → µ) need not be zero) i.e.

∑
ν

P (µ → ν) = 1 (2.51)

If this process is used repeatedly the chosen are a Markov chain of states. In

order to ensure that this chain will eventually contain states with appropriate

probabilities two further conditions must be applied, these are ergodicity and

detailed balance.

The condition of ergodicity requires that every state must be attainable from

the initial state if the chain is continued for a sufficiently long period. This

means that, though in practice it may be convenient to set some transition

probabilities to zero in order to simplify a calculation, we must ensure that

there is at least one non-zero transition path available.
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The condition of detailed balance ensures that it is the Boltzmann probability

distribution which is generated after the system has come to equilibrium. A

defining condition is that, at equilibrium, the rate at which the system enters

the state µ must be equal to the rate at which it leaves this state (this is

analogous to equation 2.45 when dwµ

dt
= 0):

∑
ν

pµP (µ → ν) =
∑

µ

pνP (ν → µ) (2.52)

substituting 2.51 this becomes:

pµ =
∑

µ

pνP (ν → µ) (2.53)

This is sufficient to ensure that pµ is the equilibrium probability distribution,

this is not however, sufficient to ensure that the probability distribution will

tend to pµ from any initial state. This is because it does not prevent the

formation of limit cycles. These occur when the probability distribution

becomes trapped in a dynamic equilibrium such that it rotates cyclically

through a series of different values. This problem is eliminated by further

requiring:

pµP (µ → ν) = pνP (ν → µ) (2.54)

Thus we have arrived at the condition of detailed balance. Rearranging gives:

P (µ → ν)

P (ν → µ)
=

pν

pµ

= e−β(Eν−Eµ) (2.55)

All that remains is to define the algorithm controlling the evolution of the

Markov process, however it is useful to first introduce the concept of ac-

ceptance ratios. If, in equation 2.54 we set µ = ν then it is clear that the
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condition is fulfilled regardless of the value taken by P (µ → µ). This gives

some freedom in the definition of the probabilities P (µ → ν) as any adjust-

ment to the value of P (µ → ν) can be compensated for by an equal and

opposite adjustment in P (µ → µ) ensuring that the sum rule is fulfilled.

This can be exploited by breaking the transition probability into two parts:

P (µ → ν) = g(µ → ν)A(µ → ν) (2.56)

g(µ → ν) is the selection probability, it is the probability that while the

system is in state µ the Markov process algorithm will generate the state ν.

A(µ → ν) is the acceptance ratio, this states that given that the state ν has

been generated from initial state µ the transition should only be accepted

some fraction of the time. If we write:

P (µ → ν)

P (ν → µ)
=

g(µ → ν)A(µ → ν)

g(ν → µ)A(µ → ν)
(2.57)

Then A(µ→ν)
A(ν→µ)

lies anywhere between zero and infinity, giving the freedom to

choose any value for the selection probabilities g(µ → ν) and g(ν → µ). It is

clear that although A(µ→ν)
A(ν→µ)

may be any real positive number it is beneficial

for the individual acceptance ratios to be as close as possible to 1 as any

rejected swaps equate to wasted computations. The best possible choice is

for the larger of the two ratios to equal 1 and the other to be adjusted in

accordance with equation 2.54.

An algorithm is now required that will generate new states ν from initial

state µ with probability g(µ → ν), and, that will accept this change with

a probability A(µ → ν). The most widely used example is the Metropolis

algorithm [87]. An important facet of this algorithm is that only transitions
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which cause the state ν to vary from state µ by the smallest possible amount

are permitted. Later in this thesis Monte Carlo analysis will be applied to

the problem of cation inversion in MgAl2O4 spinel, in this case only transi-

tions involving the exchange of a single pair of cations are allowed. In the

Metropolis algorithm the g(µ → ν) are chosen to be equal for all allowed

transitions and to be zero for all others. If there are N allowed transitions

then:

g(µ → ν) =
1

N
(2.58)

The condition of detailed balance now reads:

P (µ → ν)

P (ν → µ)
=

A(µ → ν)

A(µ → ν)
= e−β(Eν−Eµ) (2.59)

As mentioned above the most efficient algorithm is one in which the larger

acceptance ratio takes the highest possible value, namely 1. Of two states

µ and ν one, for example ν will have higher energy, i.e. Eν > Eµ. In this

case the larger of the acceptance ratios is A(ν → µ) = 1 thus A(µ → ν) =

e−β(Eν−Eµ). We can now write the acceptance ratio as:

A(µ → ν) =





e−β(Eν−Eµ) ifEν > Eµ

1 otherwise
(2.60)

This is the Metropolis algorithm.

2.9 Density Functional Theory

Density Functional Theory, (DFT), is a quantum mechanical technique orig-

inating from work by Hohenberg, Kohn and Sham [88,89]. They showed that
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the ground state energy of an interacting inhomogeneous electron gas in a

static potential vext(r) can be written in the form:

E =

∫
vext(r)ρ(r)dr +

1

2

∫ ∫
ρ(r)ρ(r′)
|r− r′| drdr′ + G[ρ(r)] (2.61)

where E is the total ground state energy of the electron gas, ρ(r) is the charge

density and G[ρ(r)] is a universal functional of the charge density. Equation

2.61 is at a minimum for the correct density function ρ(r). G[ρ(r)] can be

written as:

G[ρ(r)] ≡ Ts[ρ(r)] + Exc[ρ(r)] (2.62)

where Ts[ρ(r)] is the kinetic energy of a system of noninteracting electrons

with charge density ρ(r) and Exc[n] is the exchange-correlation term. Ts[ρ(r)]

can be computed from,

Ts[n] ≡ 〈Ψ0
n|T̂ |Ψ0

n〉 (2.63)

where Ψ0
n is the ground state wavefunction of the system and the kinetic

energy operator T̂ = ∇2

2
. Up to this point the methodology is exact, however

an analytical form for Exc[ρ(r)] is not known. For an electron gas, a system

of interacting particles, the effects of exchange and correlation are important

for an accurate description of the behaviour. In a non-interacting system, the

antisymmetry of the wave-function requires that particles with the same spin

occupy distinct orthogonal orbitals, thus the particles become spatially sepa-

rated. In an electron gas, in which all the atoms repel one another, exchange

will therefore lead to a lowering of the energy. Interactions also result in the

motion of the particles becoming correlated to further reduce the interaction

energy. Kohn and Sham showed that the local density approximation,
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ELD
xc =

∫
drρ(r)εxc[ρ(r)] (2.64)

could be applied to the case of an inhomogeneous electron gas in the limit of

a slowly varying density. In this εxc is the known exchange-correlation energy

of the uniform electron gas [90]. Although this limit is not approached in

the case of atoms, molecules or solids this approximation has been seen to

perform well, reproducing accurately qualities such as ground state geometry

and energetics, vibration and phonon frequencies [91]. This model can be

further improved to take into account the inhomogeneity of the electron gas

via a density gradient expansion [92], i.e. to treat Exc as Exc[ρ(r), d(ρ)
dr

]. In

addition to calculations utilising the local density approximation this thesis

contains calculations in which Exc has been approximated by the gradient

corrected functional of Perdew and Burke and Ernzerhof (PBE) [93].

The charge density is constructed from a wavefunction, Ψ. The wavefunction

is taken to be a Slater determinant of one-particle wavefunctions

Ψ = A(n)|φ1φ2...φn|. (2.65)

When the molecular orbitals, φi are orthonormal (i.e. 〈φi|φj〉 = δij) the

charge density is given by the sum

ρ(r) =
∑

i

|φi(r)|2 (2.66)
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The energy is determined by optimizing variations in the total energy, defined

in equation 2.61, with respect to variations in the charge density, subject to

the orthogonality conditions stated above.

δE

δρ
−

∑
i

∑
j

εij〈φi|φj〉 = 0 (2.67)

where εij are Lagrangian multipliers.

This process leads to the Kohn-Sham equations [89]:

[
−1

2
∇2 + VKS(r)

]
φi(r) = εiφi(r) (2.68)

where the Kohn-Sham potential is

VKS(r) =

∫
dr′

ρ(r′)
|r− r′| + vxc(r) + vext(r) (2.69)

vext(r) is a static potential, external to the electon gas and vxc(r), the exchange-

correlation potential is

vxc(r) =
δExc[ρ]

δρ(r)
(2.70)

Since VKS(r) depends upon the density ρ(r) these equations must be solved

self consistently; starting with an assumed ρ(r), solve equation 2.68 to obtain

a set of molecular orbitals {φi(r)} from which a new density is constructed.
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This process is repeated until the input and output densities are the same,

to within some chosen criteria.

The periodic nature of crystals means that periodic boundary conditions are

appropriate. Bloch’s theorem [94, 95] shows that within a periodic system

each wavefunction may take the form

Ψ(r) = uk(r)e
ik.r (2.71)

these Bloch Functions can be thought of as plane waves (eik.r) modulated by

a periodic function, uk(r), provided that uk(r) satisfy the relation

uk(r + T) = uk(r) (2.72)

where the vector T represents a translation to an identical lattice point.

The uk(r) can be used to construct a solution by summing the contributions

from the terms with wave vectors k + G where G is any reciprocal lattice

vector. In principle there are an infinite number of such vectors, however,

those which have small kinetic energies |k + G|2 are more important than

those with large kinetic energies, the plane-wave basis set is thus truncated to

include only those waves with kinetic energies less than some cut-off energy.

This cut-off energy must be high enough to allow sufficient plane-waves to

accurately describe the reciprocal lattice, hence it is necessary to ensure that

the calculations are converged with respect to changes in this value. In order

to make computation possible the wave function is only calculated at a subset
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of these k-points. The process of reducing the k-point set is called k-point

sampling. The scheme used for the quantum mechanical calculations in this

study is due to Monkhorst and Pack [96] in which the chosen points form a

uniform grid in k space.




