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Abstract

Magnesium aluminate spinel, MgAl2O4, is an excellent model tertiary oxide which has been

the subject to a significant number of experimental and theoretical studies since its structure

was first reported by Bragg in 1915 [29]. One of the defining characteristics of this material

is its ability to tolerate a significant degree of inversion between the cation sublattices: that is,

magnesium ions, which Bragg allocated to the tetrahedral sublattice can become exchanged

with aluminium ions that he assigned to the octahedral sublattice. This apparently simple

modification has profound affects on the physical properties of this material. The presence

of antisite defects can affect both the concentrations of other intrinsic point defects as well as

cation migration energies. Antisite defects can also accommodate MgO or Al2O3 excess in

nonstoichiometric spinel.

There are three principle factors that can affect transport of cation species in spinel, these are:

(i) the concentration and hence availability of the mediating point defect, (ii) the activation

energy for an isolated ‘hop’ and (iii) the diffusion prefactor, D0. This prefactor contains infor-

mation such as the number of equivalent pathways, jump distances and the attempt frequency.

In this thesis atomistic simulation is used to determine the structures and relative concentrations

of the isolated intrinsic point defects as well as the diffusion migration energies energies and

prefactors. This allows a thorough understanding of the kinetic and thermodynamic processes

occurring in a spinel (assuming defect concentrations are very low, ie. at the dilute limit). In

order to extend this study to cover real materials, the accelerated dynamical technique, TAD,

was applied to point defects that are clustered to oppositely charged point defects, such as

those responsible for nonstoichiometry. The results demonstrate the immense complexity that

can arise from the formation of defect clusters but allow some overarching conclusions to be
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drawn concerning the affect of defect clustering on ion diffusion.

Atomistic simulation was also used to examine isovalent cation substitution into BO oxides.

This allowed the construction of a general relationship between the difference in size of the

host and substitutional cations.
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1
Introduction

The evolution of materials science and the evolution of human society are inextricably linked.

Such is the depth of this relationship that entire eras of human history are named after the

materials that defined them (ie. the stone, bronze and iron ages). The ability to work materials

to develop tools, such as spears and fish hooks, is one of the ways in which man has elevated

himself to levels not witnessed elsewhere in the natural world. One of the earliest examples of

what we would recognise today as materials science is the firing of clay and sand in an open

fire to make pottery. The next major milestone, in both material and human evolution, was the

extraction of copper and tin metals from ores and their subsequent mixing to make bronze [1].

Some of the earliest bronze artefacts can be traced back to roughly 3500 BC and this marks the

beginning of the bronze age [1]. Mankind’s emergence into the bronze age also signifies the

dawn of the field of metallurgy. It is from metallurgy that modern materials science was born.

In a modern sense, materials science and engineering is a multidisciplinary field with the joint

goals of understanding material properties and the development of new materials capable of

greater performance. A developed understanding of the underlying principles responsible for

a material’s properties will aid in the development of new materials. Willard Gibbs [2], in the

late 19th century, observed a link between the thermodynamic properties relating to atomic

structure and the macroscopically observable properties of a material. The atomic structure

of a material depends on factors such as; the constituent atoms or ions, how the material was

processed, the material’s history and external conditions, such as irradiation. Consequently it

is essential to understand how these factors can affect the atomic structure and therefore a ma-

terial’s properties. Recent developments in experiential techniques and in particular the rapid
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expansion of computational modeling have enabled more in-depth investigations into material’s

behaviour and have opened up new fields within materials science, such as nanotechnology and

biomaterials.

Since the industrial revolution began in Great Britain, in the late 18th century, there has been

a dramatic increase in the burning of fossil fuels for energy. The rapid industrialisation of

developing countries (such as China, India and Brazil) coupled to an ever increasing global

population suggests that demand for energy will continue to increase at an alarming rate. Un-

fortunately, as fossil fuel use has been stepped up over the last three centuries, the level of

carbon dioxide in the atmosphere has increased accordingly. Carbon dioxide, along with nu-

merous other gasses (eg. methane, CH4), in the atmosphere absorb energy from the sun which

has been reflected off the earth’s surface. As the concentration of these ‘greenhouses gasses’

in the atmosphere increases the amount of this energy that is trapped will increase and a con-

comitant rise in global temperature can be expected. This phenomenon was first explained by

Joseph Fourier in 1824 [3]. The impact of even a small increase in global temperature could be

catastrophic, particularly for people living in low lying regions of the world, which would be

flooded by rising sea levels.

Crafting a solution to the climate change problem, whilst continuing to meet the demand for

energy, is one of the great challenges of the 21st century. Any attempt to reduce the impact

of man made climate change will need to be multifaceted and consist of new methods of gen-

erating energy but also increasing efficiency and ultimately taming demand. There are many

technologies, currently under development that have the possibility to generate the energy re-

quired, with significantly reduced carbon emissions. These include nuclear fission and fusion,

fuel cells, wind, solar, tidal, geothermal and biofuels. The successful implementation of many

of these technologies is and will continue to be dependent on materials from which they are

constructed. Materials science is also essential in increasing efficiency, that is, constructing

buildings out of more thermally insulating materials that can reduce energy waste.

Over the course of the last 50 years, nuclear power stations throughout the world have been

generating electricity without the enormously large carbon emissions associated with fossil

fuel based methods of electricity generation. However, following the accident at Chernobyl

in 1986 public opinion turned strongly against nuclear power. Consequently there have been

very few new reactors opened since. More recently, owing to the threat posed by man made
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climate change, nuclear power appears to be undergoing a renaissance as governments look

to meet their emissions targets, as laid out in the Kyoto Protocol [4]. New fission reactors,

termed Generation IV, are currently being designed to take into account recent advances in

both materials science and engineering physics.

Generation IV reactors are the state of the art in terms of energy generation from nuclear fission,

however, looking to the longer term there is the possibility of producing electricity from nuclear

fusion. Nuclear fusion involves the fusing together of two light atoms to form a heavier one, as

shown in equation 1.1, releasing a large amount of energy in the process. It is this process that

occurs at the very centre of stars.

3
1T+2

1 D→4
2 He+1

0 n+Energy (1.1)

In order to overcome the nuclear repulsion between the two ions, very high temperatures are

required. A fusion plasma is, therefore, very hot and must be suspended within a magnetic

field, for example, in a toroid shaped reactor, commonly referred to as a tokamak. Despite

the magnetic confinement, the materials from which these reactors are constructed will be

required to operate at high temperatures and under high flux, fast neutron bombardment over

large timescales.

Previous fission reactor designs incorporated the extensive use of traditional building materials,

however, there is now an impetus to move away from materials such as steel and make greater

use of ceramic materials. Ceramic materials are currently employed in the nuclear industry

as a fuel matrix (ie. UO2 [5]) and are being seriously considered as a host matrix for the

immobilisation of actinide waste that is to be stored in a geological repository [6]. There are

numerous design proposals for a commercial nuclear fusion power station and many of these

incorporate a significant use of ceramic materials. The region immediately behind the ‘first’

wall (the first wall directly faces the plasma) of a fusion reactor could be made up of a lithiated

ceramic material (eg. Li4SiO4 [7] or Li2TiO3 [7]) which will be used to generate the tritium

(3
1T) fuel essential to maintain the fusion plasma as well as protecting the external structure

from high energy neutrons.

Owing to its excellent neutron irradiation tolerance, magnesium aluminate spinel, MgAl2O4,

has been selected as a candidate material for use in fusion reactors. More specifically it has

3
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been suggested for use as dielectric windows in the radio frequency heating systems or as an

insulating material for the magnetic coils [8]. This thesis aims to investigate, using atomistic

simulation techniques, the defect structure, stability and transport process in an equilibrated

spinel as well as considering how these processes are likely to be influenced by factors such as

nonstoichiometry and irradiation. It is also hoped that the defect and transport properties of this

relatively simple system can be confirmed experimentally and the fundamental understanding

obtained may prove applicable to other similar systems (ie. more than one cation sublattice).
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2.1 Disorder in crystalline materials

2.1.1 Crystal structures

Early in the history of modern science it was suggested that the regular external form of crystals

implied an internal regularity of their constituents. In 1784 Haüy [9] created the law of rational

intercepts which states that the form of crystals could be uniquely described by reference to

crystal axes, their relative lengths and angle of inclination. Once defined these axes marked

out a unit cell that is the smallest unit to possess the symmetry of the crystal as a whole.

This led to the recognition that there are seven systems of crystal symmetry; cubic, hexagonal,

tetragonal, orthorhombic, rhombohedral, monoclinic and triclinic. These seven systems of

crystal symmetry represent the simplest seven shapes that can be infinitely tessellated in three

dimensional (3D) space without leaving any empty space. Bravais established in 1848 that

there are 14 distinct ways of arranging networks of points within these seven crystal systems

[10]. Centered on each lattice point is a motif (or basis) consisting of one or more atoms, which

is replicated throughout the crystal.

The space group of a crystal structure is a mathematical description of the symmetry inherent

in the structure. In three dimensions the space groups are made up from the 32 crystallographic

point groups and the 14 Bravais lattices. This results in a space group being a combination

of the translation symmetry of a unit cell, the point group symmetry operators of reflection,

rotation and improper rotation as well as screw axis and glide plane symmetry operations.

5
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Screw axis and glide planes are compound symmetry operations as they are combinations of

rotation or reflection with a translation equal to less than the unit cell size. These generate 230

unique space groups, which describe all possible crystal systems [11–13].

The description of a crystal, given above, describes a ‘perfect’ unit cell, however, a ‘real’

material will have imperfections in its crystal lattice. For simplicity it is customary to discuss

these imperfections as either point defects or extended defects. Point defects are imperfections

that are localised over a few atomic sites whilst extended defects are those that influence larger

volumes of a material. Defects formed within a material that do not include the presence of any

foreign atoms are known as intrinsic defects. Conversely a defect that incorporates a foreign

atom is referred to as an extrinsic defect. A brief overview of the intrinsic point defect processes

is given in section 2.1.2 whilst extended defects also include grain boundaries and surfaces. The

inclusion of defects into a crystal can have a profound affect on the macroscopic properties of a

material, and in many cases a material’s desirable properties arise as a consequence of intrinsic

or extrinsic defects. An understanding of defect properties may facilitate the development of

many useful materials and devices which could not be obtained if constrained to be designed

and developed from ‘perfect’ systems [14].

2.1.2 Intrinsic point defects

During crystal growth, as a result of irradiation damage or simply as a result of a thermally

activated process, atoms become displaced from their lattice site thus generating unoccupied

or vacant lattice sites. These vacancies are generally stable at room temperature (ie. remain

unoccupied on timescales much greater than atomic vibrations) and may be mobile at higher

temperatures (that is the unoccupied site receives an atom or ion from an adjacent site, which

itself becomes the vacant site). The removal of an atom from a lattice site disrupts the local

bonding causing a distortion in the local crystal structure, this lattice distortion in the region

surrounding the vacancy is known as the defect’s strain field. If the vacancy is produced by

displacing a lattice atom, then either (i) the released atom may be trapped within the lattice as

an interstitial ion or (ii) move out to the surface to form new layers. These two distinct disorder

processes are termed Frenkel and Schottky disorder and are illustrated in figures 2.1 and 2.2.

If we consider a binary metal oxide, MO, the defect reactions associated with the cation and

6
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Figure 2.1: An MO crystal lattice containing cation Frenkel disorder. The yellow spheres represent,

M2+, cations and the red spheres represent O2−. The transparent box represents a vacant lattice site.

Figure 2.2: An MO crystal containing Schottky disorder. M2+ and O2− ions have been transported

form their lattice sites (represented by transparent boxes) to form new bulk material.
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anion Frenkel processes are reported in equations 2.1 and 2.2 (these equations use Kröger-Vink

notation [15], which is explained in Appendix A.

M×
M→V��

M +M••
i (2.1)

O×
O→V••

O +O��
i (2.2)

The reaction for Schottky disorder is reported in equation 2.3.

M×
M +O×

O→V��
M +V••

O +MO (2.3)

The Frenkel and Schottky reactions are referred to as intrinsic defect process because they are

thermally activated process, requiring the addition of no external impurities. The other form of

intrinsic disorder process that can make a significant impact on a crystal’s properties is antisite

disorder, where two ions swap lattice sites. In the simple binary oxide MO, this is a high

energy process as it involves placing a positively charged cation on a site previously occupied

by a negatively charged anion and vice-versa. This antisite reaction is reported in reaction 2.4

and figure 2.3.

M×
M +O×

O→M••••
O +O����

M (2.4)

In crystals containing more than one cation (or anion) species it is possible for either the like

charged cations or anions to exchange, as described in equation 2.5 for ABO2, where A and B

are divalent cations (in this example the resultant antisite defects are not charged).

A×
A +B×B→B×A +A×

B (2.5)
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Figure 2.3: An MO crystal lattice containing antisite disorder. Here, a M2+ cation has been exchanged

with an O2− ion. In this example the defects are located on adjacent lattice sites and are therefore

clustered, however, it is also possible for the defects to be located at a large enough separation that they

are effectively ‘infinitely’ separated (ie. in the dilute limit).
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2.1.3 Intrinsic defect concentrations

Isolated defects

As temperature is increased, the number of lattice ions that acquire sufficient energy to move

away from their lattice site increases, thus leading to an increased concentration of intrinsic

defects and a concomitant increase in the internal energy of the system. As the number of

defects increases, so does the number defect configurations (arrangements) within the crystal

(ie. the configurational entropy) which leads to a decrease in the overall energy of the system.

It is convenient to consider the system at constant pressure and temperature, in which case, the

change in Gibb’s free energy (∆G) is given by equation 2.6,

∆G = ∆U−T ∆S (2.6)

where, ∆U is the change in internal energy of the crystal and ∆S is the change in entropy.

Consider the solid, MO, containing ns Schottky defects, there will be ns cation vacancy and

ns anion vacancies. If the energy to form one Schottky pair is Es
f then the change in internal

energy is the product of the number of the these defect pairs and the energy to form one pair

(equation 2.7) [10].

∆U = nsEs
f (2.7)

The simultaneous increase in entropy can be obtained from the Boltzmann relation [16],

∆S = kB lnw (2.8)

where, kB is the Boltzmann constant and w is the number of ways of arranging n Schottky pairs

in the crystal. The number of ways of arranging ns cation vacancies on N cation sites can be

found using equation 2.9.

wcation =
N!

ns!(N−ns)!
(2.9)
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An equivalent expression can be found for determining the number of ways of arranging ns

anion vacancies on N anion sites and therefore the configurational entropy can be given by,

∆S = kB ln(wcationwanion) (2.10)

∆S = kB ln
�

N!
ns!(N−ns)!

· N!
ns!(N−ns)!

�
(2.11)

∆S = 2kB{ln(N!)− ln(N−ns)!− ln(ns!)}. (2.12)

If ns is sufficiently large then Stirling’s approximation [17] (lnns!� ns lnns) can be applied to

equation 2.12 to give,

∆S = 2kB[N lnN− (N−ns) ln(N−ns)−ns lnns] (2.13)

which can be combined with equations 2.6 and 2.7 to leave,

∆G = nsEs
f −2kBT [N lnN− (N−ns) ln(N−ns)−ns lnns] (2.14)

At thermodynamic equilibrium the free energy is at a minimum, therefore the first derivative

of 2.14 with respect to ns is equal to zero.

∂G
∂ns

= Es
f −2kBT ln

�
N−ns

ns

�
= 0 (2.15)

Assuming that the number of defects is small compared to the number of lattice sites (ie.

ns � N) then equation 2.15 can be rearranged to give,

ns

N
= exp

� −Es
f

2kBT

�
(2.16)
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where the quantity ns/N represents a concentration of Schottky pairs (a shorthand notation for

defect concentration is given by [n]). It is possible to conduct an analogous derivation for each

type of intrinsic disorder discussed section 2.1.2.

Defect clusters

In the derivation above it is assumed that the concentration of defects is sufficiently low that

their mutual interactions can be neglected. In reality, for higher concentrations, the electrical

and elastic interactions between defects are relevant and may give rise to changes in the spatial

distribution of defects. Again considering the crystal, MO, defect association can be written as

shown in equation 2.17.

V��
M +V••

O →{V��
M : V••

O }× (2.17)

The binding energy, BE, is defined as the difference between the defect energies of the clustered

defects, Ecluster
f and the energies of the isolated defects, Eisolated

f , as shown in equation 2.18.

BE = Ecluster
f −∑

i
Eisolated

f (2.18)

A negative binding energy implies that it is energetically favourable for the defects to exist in

a ‘bound’ cluster rather than in isolation.

2.2 Solid state diffusion

2.2.1 Introduction

Diffusion can be considered as the net number of atoms to pass through a plane of unit area

per unit time. This process is driven by a non-uniform gradient, generally referred to as a

driving force. One of the most common driving forces is the presence of a concentration or

chemical gradient, whereby atoms move from a region of high concentration to a region of low
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concentration. The formal mathematical description of diffusion was derived by Fick [18] and

is given in equation 2.19 for a single spatial dimension,

J =−D
∂C
∂x

(2.19)

where, J is the flux of atoms, D is the diffusion coefficient and ∂C
∂x represents a concentration

gradient.

From a microscopic point of view, diffusion occurs by Brownian motion [19] of atoms or

molecules. By studying the motions of granules from pollen in water the Scottish botanist

Robert Brown [19] observed a chaotic motion of the particles. Albert Einstein [20] argued

that the motion of mesoscopic particles is due to presence of molecules in the liquid. Further-

more, that these molecules, owing to the Boltzmann distribution of their energies, are subject

to thermal movements of a statistical nature. These statistical fluctuations are the source of

stochastic motions occurring in matter all the way down to the atomic scale [21]. Einstein re-

lated the mean square displacement (MSD) of particles to the diffusion coefficient, which will

be discussed later.

In gases, diffusion occurs by the free flights of atoms (or molecules) between collisions; the

individual path lengths are distributed around some well defined mean free path. Atomic mo-

tion in liquids is more subtle and can be though of as a ‘shuffling‘ process where each motion

is less than the average spacing of atoms in a liquid. Diffusion in the solid state is the result of

random atomic ‘hops’ in a lattice. The diffusivity of each ‘hop’ can be expressed by consider-

ing a number of physical quantities that describe the elementary jump processes. These factors

include: the jump rates, jump distances, geometric and correlation factors [21].

The intrinsic point defects, mentioned previously, are often the vehicles that allow atoms to

perform the tiny jumps, which constitute diffusion. For each defect type there is a specific

migration mechanism and in many cases, combinations of these point defects lead to more

complex diffusion mechanisms. What follows is a brief description of the most simple mecha-

nisms by which atoms can be transported through a crystal lattice.
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Vacancy mechanism

The vacancy mechanism is facilitated by the presence of vacancy point defects. In the process

an atom on a lattice site hops into a neighbouring vacant lattice site as illustrated in figure 2.4.

Figure 2.4: A M2+ cation migrating via a vacancy mechanism.

Figure 2.4 shows a cation migrating via a vacancy mechanism on the cation sublattice but

vacancy migration can occur on either sublattice, or in some cases between sublattices.

Interstitial mechanism

An interstitial migration process occurs when an ion moves from one interstitial site to a neigh-

bouring interstitial site. This process is illustrated in figure 2.5.

Interstitialcy mechanism

If the migration energy is too great to facilitate migration via a direct interstitial mechanism,

there is another mechanism by which an interstitial ion can be transported. In this process an
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Figure 2.5: A M2+ cation migrating via a interstitial mechanism.

interstitial ion moves onto an occupied lattice site. The atom formally occupying the lattice site

is forced to form a new interstitial, which can then continue the process (figure 2.6).

2.2.2 Transition state theory (TST)

Having examined the processes by which point defects can facilitate diffusion it is essential

to examine the rate at which these processes can occur. The formalism that underpins our

understanding of these random walk diffusion processes is transition state theory. Consider the

vacancy mediated diffusion mechanism shown in figure 2.4; clearly the migrating cation has to

squeeze between the two adjacent oxygen anions, a process that requires energy (ie. the atom

enters an activated state often referred to as a transition state). This energy is usually greater

than the thermal energy, kBT , consequently these activated events are infrequent. At a finite

temperature all atoms in a lattice will oscillate about their equilibrium positions because they

do not posses enough energy to access the activated state and hence complete the jump so they

simply continue to oscillate within the initial state. However, should, as a result of thermal

activation, an atom have enough energy to reach the activated state along a given trajectory

then a jump will occur.
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Figure 2.6: Pictorial representation of a M2+ cation migrating via a interstitialcy mechanism. An

interstitial ion moves onto a lattice site thereby displacing a lattice atom onto a neighbouring interstitial

site.

In the TST approximation, the classical rate constant for escape from a state A to an adjacent

state B is taken to be the equilibrium flux through the dividing surface between A and B. As-

suming that there are no correlated events (correlation and its possible affects will be discussed

later) then this is, in fact, the exact rate constant. Figure 2.7 shows an example of a potential

energy surface for a simple system with two possible equilibrium states A and B separated by

an activated transition state. Our starting point finds an atom oscillating about state A until

such a time as it oscillates along the trajectory leading to state B with sufficient energy to enter

the transition state and cross over into state B.

It is possible to determine the time spent in each of the two states A and B as well as determining

the number of times the dividing surface is crossed during the simulation. The rate of migration

from state A is then half the number of crossings divided by the fraction of time spent in state

A.

Another useful approximation to TST can be applied once a saddle point on the potential energy

surface has been located and identified. Harmonic Transition State Theory (HTST) assumes

that it is possible to consider the potential energy surface near a basin (at least the region
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Figure 2.7: A two-state system that illustrates the definition of transition state theory as the flux through

the transition state bounding A [22].

sampled thermally), as well as that near a saddle point using a second order expansion, ie.

the vibrational modes are harmonic. The TST rate then becomes a simple Arrhenius term, as

shown in equation 2.20,

kHT ST = v0 exp
�
−Gm

kBT

�
(2.20)

where,

Gm = Em−T Sm (2.21)

and

v∗0 = v0 exp
�

Sm

kB

�
=

3N

∏
i

vmin
i

3N−1

∏
i

vsad
i

. (2.22)

giving

kHT ST = v∗0 exp
�
−Em

kBT

�
. (2.23)
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In the equations above, Gm is the Gibbs free energy for the process, Em is the migration en-

thalpy (the enthalpy difference between the initial state and the saddle point), Sm is the entropy

associated with this process, v∗o is the Vineyard term [23] (which is simply the product of the

exponent of the migrational entropy and the attempt frequency), vmin
i and vsad

i are the nonimag-

inary normal mode frequencies at the minimum and the saddle respectively.

2.2.3 The diffusion coefficient

The diffusion coefficient is the mathematical function that relates the gradient in the concen-

tration of a given species with the flux at a given temperature. As there are several different

mechanisms (eg. vacancy and interstitial mechanisms) by which matter can be transported

through the lattice, the overall diffusion coefficient can be given as the sum of these contribu-

tions, shown in equation 2.24.

DTotal = DVacancy +DInterstitial (2.24)

Here DTotal is the total diffusion of a species and DVacancy and DInterstitial (this includes both

methods of interstitial diffusion) represent the contributions of the individual diffusion pro-

cesses. There are numerous factors that combine to determine which of the diffusion processes

is responsible for the majority of atomic transport. The two predominant factors are the con-

centration of the transport mediating point defects and the ease with which that mechanism

can provide transport, often referred to as the diffusivity, dx. Equation 2.25 shows how these

factors combine to give the overall diffusion coefficient for a given species,

DTotal =
nVacancy

N
dVacancy +

nInterstitial

N
dInterstitial (2.25)

where, nVacancy and nInterstitial are the number of vacancies and interstitials respectively and

dVacancy and dInterstitial are the diffusivities of the vacancy and interstitials. The determination

of the defect fraction has been covered previously (section 2.1.3), however, the diffusivity will

be addressed here. Assuming harmonic transition state theory is valid, then the relationship

between the diffusivity and the rate constant, is given by equation 2.26,
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dx =
1
6

f za2kHT ST (2.26)

where, f is the correlation factor which relates diffusion of actual atoms to the diffusion of the

defect and will be examined more closely in the next section, z is the number of equivalent

pathways the diffusing mechanism can follow and a is the jump distance. In order to sim-

plify the expression shown in equation 2.26, the temperature independent terms are collected

together in the constant Dx
0 for a given process, shown in equation 2.27.

dx = Dx
0 exp

�
−Em

kBT

�
(2.27)

Including the defect concentration then gives,

D = Dx
0 exp

�
−Em

kBT

�
exp

�
E f

kBT

�
= Dx

0 exp
�
−(Em +E f )

kBT

�
= Dx

0 exp
�
−Ea

kBT

�
(2.28)

where Ea is the overall activation energy for the process. In the majority of experimental

investigations of diffusion in the solid state, a plot of 1000 T−1 against logD is a straight line

and values for Ea and D0 are obtained from this Arrhenius plot [24].

2.2.4 Correlation factor

Up to this point it has been assumed that each random activated event has been independent

of those that have gone before (ie. the correlation factor is unity), often however, subsequent

vacancy jumps are correlated. Consider a radioactive tracer ion migrating via a vacancy mech-

anism. When the vacancy and the tracer atom jumps onto the vacant site, they move in opposite

directions. Immediately after this exchange the vacancy resides adjacent to the tracer, there-

fore, there is finite probability of the tracer making a reverse jump. Consequently the tracer

atom does not diffuse as far as expected for a completely random walk process, (ie. f < 1).

The extreme example of this tracer diffusion via a vacancy mechanism in one dimension, as

shown in figure 2.8.
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Figure 2.8: Diagram representing impurity diffusion via a vacancy mechanism in one dimension. The

yellow spheres represent lattice atoms, the green sphere is the impurity atom and the transparent cube

represents a vacancy.

In the example given in figure 2.8 the correlation factor is zero as once the vacancy and the

tracer ion have exchanged the only possible migration the tracer ion could possibly make is to

jump back onto the site it had just vacated. For self-diffusion the correlation factor is entirely

dependent on the structure of the lattice and is independent of the atoms involved. A table

of many of the most common correlation factors can be found on page 116 of Mehrer [21],

however, these generally fall in the region 0.4-1.0. Unfortunately, the correlation factor can

be significantly more complex when considering substitutional solutes, where the correlation

factor is now dependent on the jump specific attempt frequency, migration energy and temper-

ature.

2.3 Magnesium aluminate spinel

2.3.1 Introduction

Magnesium aluminate spinel (MgAl2O4) is an abundant naturally occurring mineral, found

in the Earth’s crust. The MgO-Al2O3 system is particularly important for the understanding

of metallurgical slags, refractories, ceramic materials and the formation of microstructures in

geological systems [25]. Magnesium aluminate is the intermediate phase in what appears, at

first glance, to be a relatively simple system, ie. there is only one intermediary phase, spinel

(figure 2.9).
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Figure 2.9: Phase diagram for the MgO-MgAl2O4 system from Hallstedt et al. [25].

2.3.2 Crystallography

Magnesium aluminate is the parent compound of the spinel group that has the general formula

AB2X4 where A and B are cations and X is an anion. Some examples of other spinel materials

which have been investigated previously are; Si3N4 and Ge3N4 [26], Ga3O3N [27] and γ-

Fe2O4 [28]. The structure of MgAl2O4 as first reported by Bragg [29] and Nishikawa [30],

assigned all Mg2+ cations to sites of tetrahedral symmetry and all Al3+ ions to octahedral sites

within an Face Centred Cubic (FCC) Bravais lattice. What neither Bragg nor Nishikawa were

aware of was that a number of the Mg2+ and Al3+ cations are exchanged. This phenomenon

was first observed in spinel by Barth and Posjnak [31] and, in fact, such cation antisite defects

occur in most spinels [32].

Nevertheless, from a formal crystallographic point of view spinel exhibits the F43m space

group [33], however, the simpler Fd3m is usually adopted [34]. A magnesium aluminate

spinel unit cell consists of eight formula units making a total of 56 atoms; 32 anions and

24 cations, consequently the spinel lattice parameters are large, ie. a = 8.09 Å [35]. The

structure can be considered as a pseudo FCC arrangement of O2− ions. Of the 64 tetrahedral
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interstices eight are occupied by Mg2+ cations and of the 32 octahedral sites half are occupied

by Al3+ cations. More formally, within the Fd3m space group, the Mg2+ cations occupy 8a

and Al3+ cations occupy the 16d Wyckoff positions. The O2− anions occupy 48 f Wyckoff

positions, which are displaced approximately 0.1 Å in a �111� direction from the ideal FCC

positions. This displacement from the ideal lattice sites, defined by the Wykoff site, is defined

using the u parameter, which is simply a measure of this displacement. Figure 2.10 shows the

structure of spinel, highlighting a number of tetrahedrally co-ordinated Mg2+ and octahedrally

co-ordinated Al3+ cations.

Figure 2.10: A perfect spinel unit cell. The red spheres represent oxygen anions while the green and

yellow spheres represent the aluminium and magnesium cations respectively.
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2.3.3 Cation antisite disorder in MgAl2O4

The crystallographic arrangement described above is referred to as normal spinel. However,

as mentioned previously, it is usual for a number of octahedral Al3+ ions (Al×Al) to become

exchanged for tetrahedral Mg2+ ions (Mg×Mg) via reaction 2.29,

Mg×Mg +Al×Al�Al•Mg +Mg�Al (2.29)

where, Mg�Al is a Mg2+ ion on a lattice site usually occupied by an Al3+ cation and the dash

indicates that the Mg2+ cation has one less positive charge than the Al3+ it has replaced.

Equation 2.29 is the cation antisite reaction and results in a degree of cation sublattice in-

version. The level of inversion present in MgAl2O4 can be quantified using the inversion pa-

rameter, i, defined as (Mg1−iAli)[MgiAl2−i]O4 where parentheses refer to the tetrahedral sites

and square brackets to the octahedral sites. The level of inversion found in natural spinel,

which has been allowed to equilibrate over geological timescales, can be relatively small

(0.05 < i < 0.12) [36–38]. Conversely, cation disorder in synthetic magnesium aluminate

spinel is generally more significant, with values as high as i = 0.33 [39]. There are, how-

ever, a number of other spinel materials which can exhibit far higher degrees of inversion. For

example, MgIn2O4 where i� 1 is considered to be fully inverse (ie. all the tetrahedral sites are

occupied by In3+ cations and the remaining cations are randomly arranged on the octahedral

sites). MgGa2O4 exhibits an inversion i � 0.66; effectively a random arrangement of cations

over both the tetrahedral and octahedral sites.

In geologic environments, the chemical and structural variations in spinels are dependent on

both paragenesis and pressure-temperature (P−T ) history; because of this, they are used as a

petrogenetic indicator [40, 41]. There have been numerous experimental studies into the rela-

tionship between temperature and the degree of inversion, these include electron spin resonance

(ESR) of impurity Cr ions (in MgAl2O4) [37], X-ray diffraction [42,43], nuclear magnetic res-

onance (NMR) [44, 45], neutron diffraction [46, 47] and in-situ Raman spectroscopy [48]. At

higher temperatures the number of atoms that have sufficient energy to vacate their lattice site

is increased, consequently there are more interstitial and vacancy defects that can annihilate.

There is a finite probability that a Mg••
i (interstitial) defect will annihilate with a V���

Al defect (or

an Al•••i defect will annihilate with a V��
Mgdefect) thus creating an antisite defect. Therefore as
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the number of these defects is increased, annihilation will be increased leading to an increase

in the overall level of inversion. Within the literature there is conflict concerning the maximum

temperature at which an increase in inversion is observed, ie. Schmocker and Waldner [38]

suggest that above 1220 K there is no further increase in cation inversion, however, other stud-

ies by Yamanaka and Takéuchi [42], Maekawa et al. [45], Redfern et al. [47], Seko et al. [49]

and Andreozzi et al. [43] suggest that increases in cation disorder are evident up to tempera-

tures approaching 1600 K. The 27Al NMR spectroscopy experiments on quenched samples by

Wood et al. [44] also suggest that there is no increase in inversion above 1170 K, however,

they attribute this to higher temperature samples reordering to the 1170 K distribution during

cooling. Andreozzi et al. [43] used quenched single crystals and detected a linear increase

in cation disorder up to a temperature of 1370 K. As the temperature of the disordering run

was increased, Andreozzi et al. [43] also observed a linear decrease in the lattice parameter,

consequently they predicted a linear decrease in the lattice parameter as a function of cation

inversion.

Ball et al. [50] used a combined energy minimization-Monte Carlo (CEMMC) atomistic sim-

ulation technique to reproduce the relationship between the degree of inversion and the lattice

parameter. Whilst the magnitude of the decrease in lattice parameter as a function of inver-

sion observed from this model is very similar to that obtained from experiment, the atomistic

simulations suggested that the relationship was non-linear.

In order to avoid any possible loss of the high temperature equilibrium disorder, Redfern et

al. [47] investigated high temperature cation disorder in situ using neutron diffraction. Their

data suggests an inversion parameter in the region of 0.2 until a temperature of 800 K is ob-

tained, at which point a linear increase in i with temperature up to about 1900 K is observed.

They also note that the cell parameters appear to be insensitive to the degree of order, how-

ever, Andreozzi et al. [43] argues that this is due to the vibrational expansion due to the high

temperature dominating the slight lattice parameter decrease resulting from inversion. One

physical property that both sets of results seem to suggest is the variation in the oxygen po-

sitional parameter, u, as a function of inversion. From Redfern et al. [47] the relationship is

u = 0.26344−0.01021i versus u = 0.2651−0.0123i obtained form Andreozzi et al. [43]. As

the degree of inversion is increased it is expected that the local bonding around the cations sites

will be disturbed. Redfern et al. [47] and Andreozzi et al. [43] both observe an increase in the

average metal-oxygen bond distance around the octahedral site and a decrease in the average
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metal-oxygen bond distance around the tetrahedral site, which is consistent with a decrease in

the u parameter.

In recent years there has been considerable interest in developing modeling techniques capable

of predicting cation ordering in spinels. In particular, it has been demonstrated that the ther-

modynamic model of O’Neill and Navrotsky [51] is very effective at describing ordering in

end-member spinels. The O’Neill and Navrotsky [51] model states that the enthalpy of disor-

der can be represented as a quadratic function of the inversion parameter, as shown in equation

2.30,

�HD = αi+βi2 (2.30)

where, α and β are coefficients that can be determined for a particular spinel from experimen-

tal data concerning the cation distribution as a function of temperature [52]. Initially it was

suggested the vast majority of spinels could be described by assuming that β was negative with

magnitude -20 kJ mol−1 [53]. Many of the experimental studies mentioned obtained values

for the α and β coefficients of equation 2.30 by fitting to the experimental data; examples are

shown in table 2.1.

Table 2.1: α and β parameters derived for the O’Neill and Navrotsky [51] model that relates the enthalpy

for disorder and the degree of inversion (equation 2.30).

Author α/kJmol−1 β/kJmol−1 Reference

Redfern et al. 32.8 4.7 [47]

Andreozzi et al. 23(2) 13(4) [43]

Millard et al. 25(5) 5.8(9.5) [54]

Peterson et al. 31(1) -10(3) [46]

Wood et al. 36(1) -23(2) [44]

Clearly, there is still quite significant disagreement in the experimental literature concerning

the values of the α and β coefficients, and indeed even the sign of β. This is almost certainly a

result of the immense difficulty in creating perfectly stoichiometric samples, compounded by

the challenging task of determining the degree to which a sample has been disordered, added

to the inate problems associated with quenching or making experimental observations in situ.
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Atomistic simulation is a useful technique when attempting to understand disorder in mate-

rials, as it becomes possible to investigate the atomistic forces that are responsible for the

macroscopic observations made in the experiments mentioned above. Monte Carlo techniques,

based on making random swaps within a system have been shown to be particularly effective in

modeling cation disorder in spinels [50, 52, 55, 56]. The work of Palin et al. [52] attempted to

address the variation in β values obtained experimentally by isolating the contributions of the

chemical potential, η, tetrahedral-tetrahedral (T-T), octahedral-octahedral (O-O) and the T-O

interactions. They demonstrated that the value of β depends on the relative enthalpy contribu-

tions of (T-T + O-O) vs. T-O interactions. Furthermore, they determined that there is little short

range order found in normal spinels, although this is reversed when considering inverse spinels.

Lavrentiev et al. [55] used an atomistic Monte Carlo technique to investigate the implications

of cation inversion on the bulk modulus and the thermal expansion coefficient. Their results

appear to agree with the conclusions proposed by Redfern et al. [47], in that, as the temperature

is increased there is a concomitant increase in the lattice parameter, however, again this is likely

to be due to thermal expansion rather than a disordering affect. Furthermore, they observed that

pressure has no significant impact on the degree of inversion, an observation confirmed by the

compressibility and structural behaviour study conducted recently by Nestola et al. [57].

2.3.4 Radiation damage in MgAl2O4

Up until the early 1980s there was comparatively little literature detailing how ceramic mate-

rials, as opposed to metals, respond to irradiation. In 1982 Clinard et al. [58] subjected MgO,

Al2O3 and MgAl2O4 to fast-neutron (>0.1 MeV) irradiation over a range of temperatures. In

contrast to MgO and Al2O3 there was negligible swelling observed in MgAl2O4 single crystals

which led to spinel being proposed for use near the first wall of a fusion reactor [59]. Sickafus

et al. [60] explained the three probable reasons for this: (i) Complex chemistry causes the crit-

ical size of a dislocation loop nucleus to become unusually large [61], which necessarily sup-

presses loop nucleation; (ii) Complex structure generates constraints that prohibit dislocation

loops from easily unfaulting; (iii) Spinel can readily accommodate significant degrees of dis-

order on its cation sublattices. When spinel was exposed to high neutron fluences (> 5×1026 n

m−2) Sickafus et al. [62] found, using neutron diffraction, that roughly 35% of the cations have

experienced ion exchange. These results indicate that interstitial-vacancy recombination is a

highly efficient point defect annihilation mechanism, even when as, a result, there are increased

26



CHAPTER 2. Literature review

levels of disorder on the cation sublattices. This last point is important as one consequence of

neutron irradiation in spinel is an increased level of disorder on the cation sublattices [62]. As

discussed in the previous section any increase in the degree of disorder on the cation sublattice

involves only a relatively small change in the lattice parameter [43, 50]. Whilst many of the

crystal properties of spinel, including the elastic modulus remain unaffected by neutron irradi-

ation [63], others such as the hardness are slightly increased [64]. Taken together this indicates

that spinel is a highly neutron irradiation tolerant material and consequently may find many

possible applications in the nuclear industry, such as an inert matrix for actinide transmuta-

tion [65].

The depth dependent microstructural evolution of ion-irradiated spinel is dependent on the

mass and energy of the bombarding ion, as opposed to other simple radiation parameters such

as damage energy density, average primary knock-on atom recoil energy, displacement dam-

age rate or ionizing dose rate [66]. Irradiation with light ions leads to increased levels of

observable diffusion which, it is postulated, promotes defect recombination. This suggests that

light ion and electron irradiation do not produce microstructures representative of those that

would form in the material during fission or fusion neutron irradiation [67]. Conversely, after

irradiation with Zr+ ions at 920 K a moderate number of dislocation loops, of interstitial char-

acter, (average diameter ∼15 nm) were observed [66]. Shimada et al. [68] irradiated spinel

with Xe14+ ions at ambient temperatures and detected heavily disordered columns along the

tracks with a high density of electronic excitation. Additionally, they observed Al3+ disorder

occurring over a larger area than the Mg2+ ions are disordered over. By conducting their ion

irradiations at cryogenic temperatures, effectively suppressing the point defect recombination,

Yu et al. [69] observed a crystalline-to-amorphous phase transformation, via a ‘metastable’

crystalline phase. Devanthan et al. [70] examined the physical properties of this amorphous

material and found that the Young’s modulus and the hardness had decreased by 30% and 60%

respectively. The structure of this ‘metastable’ crystalline phase was established by Ishimaru

et al. [71] by bombarding spinel with Ne+ ions at 120 K and examining the samples, using

transmission electron microscope (TEM) and selected area electron diffraction (SAED). Their

SAED patterns correspond to the rock salt structure, where the lattice parameter is reduced

to roughly 4 Å and the cations are distributed randomly on the octahedral interstices within a

‘pseudo’ cubic close packed oxygen sublattice. Molecular dynamics simulations of defect ac-

cumulation in spinel [72], modeled by regularly introducing randomly placed Frenkel pairs into
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the simulation supercell, showed the spinel-rocksalt transformation, providing further support

for the work of Ishimaru et al. [71].

Molecular dynamical simulations have also been used to simulate ballistic process in spinel

[73]. These simulations show that during the initial phase of the cascade there are a large

number of defects formed, however, after just 10 ps nearly all of these defects have annihilated

leaving a small number of antisite defects and other small defect clusters. The increase in the

concentration of antisite defects is consistent with the experimental observations of irradiated

spinel [62]. Similar cascade simulations were conducted by Bacorisen et al. [74] on MgAl2O4,

MgGa2O4 and MgIn2O4: they noted that materials with higher levels of inversion retained

increased levels of point defects after the same recombination period. The work of Smith et

al. [73] was also the first occasion that complex, split interstitial defects were predicted in

spinel type materials. Rather than a simple interstitial ion occupying a previously unoccupied

octahedral interstice, two cation interstitial ions occupy two octahedral interstices surrounding

a vacant tetrahedral lattice site as shown in figure 2.11. Lattice static calculations by Ball et

al. [75] found split interstitial structures to be lower in energy than isolated simple interstitials

for all interstitial species in spinel.
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Figure 2.11: A split Al•••i −V��
Mg−Mg••

i interstitial. Both cation species in spinel form split intersti-

tials by forcing a lattice atom from its site and then residing in two of the four octahedral interstices

surrounding the vacancy site. In this image the large spheres represent the interstitial ions split across a

vacant tetrahedral magnesium site represented by a transparent yellow box. In this figure the cation and

anions are shown in their relaxed positions (ie. their minimum energy positions), in other figures in this

thesis ions are shown in the ideal unrelaxed positions for greater clarity.

29



3
Methodology

This chapter will provide a brief overview of the atomistic simulation techniques employed

in this thesis. Each of the subsequent chapters will go into the specific details of how each

technique was applied and all of the appropriate potentials and parameters used in the specific

calculations will be presented.

3.1 Atomistic simulation

Over the course of the last few decades there has been a significant increase in the use of com-

putational simulation within the scientific community. Through a combination of the dramatic

increase in computational processing power (a phenomenon described by Moore’s Law [76])

and continuing algorithm development, atomistic scale modeling has become a valuable asset,

providing a useful insight into the behaviour of atoms on a scale often inaccessible to traditional

experimental investigation.

Broadly speaking atomistic simulations can be broken down into two categories, quantum

mechanical calculations and classical calculations based on empirically derived parameters.

Quantum mechanical simulations (often referred to as ab initio) attempt to solve the many-

body Schrödinger equation. Solving the Schrödinger equation [77] gives a large quantity of

information concerning the electronic structure of the system. For the most simple cases quan-

tum mechanical calculations are considered to be formally exact, however, as larger systems are

studied various approximations have to be adopted to make the calculations tractable. Despite
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the introduction of these approximations to improve their applicability, quantum mechanical

methods place significant demands on computational resources. Early quantum mechanical

simulations were limited to all but simplest of systems (ie. H+
2 ), however, the advent of Den-

sity Functional Theory (DFT) has expanded the scope of ab initio type simulations to include

condensed matter.

The second category of atomistic simulations are those which use empirically derived potential

parameters to describe the interactions between ions. As they do not solve the Schrödinger

equation they do not yield information about the electronic structure. Despite this apparent

limitation, classical pair potential simulations can be extremely useful for predicting trends in

atomic structure and defect processes as well as predicting macroscopic properties, such as

the bulk modulus. Compared to quantum mechanical simulations, pair potential techniques

require significantly less computing power which means they can be applied to much larger

systems, in some cases millions of atoms. The successful implementation of these classical

techniques is dependant on the development and application of appropriate potential parame-

ters. A description of how appropriate potential parameters can be derived will be discussed

later.

3.2 Empirical pair potentials

3.2.1 Introduction

The empirical simulations conducted in this thesis assume that it is possible to treat an ionic

lattice using a classical Born like model [78, 79], whereby the constituent ions are represented

by a periodic array of point charges. To calculate the total energy, Φ(r1. . .rn), of the system

requires the summation of the interactions experienced by each atom as a result of the other

atoms in the system. This can be expressed formally using equation 3.1.

Φ(r1. . .rn) =
n

∑
i, j=1

Φ2(ri j)+
n

∑
i, j,k=1

Φ3(ri jk)+
n

∑
i, j,k,l=1

Φ4(ri jkl)+ . . . (3.1)

In equation 3.1, the
n

∑
i, j=1

Φ2(ri j) term refers to the interactions between pair of ions i and j at
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a given separation ri j. The
n

∑
i, j,k=1

Φ3(ri jk) and
n

∑
i, j,k,l=1

Φ4(ri jkl) terms describe the interactions

of ion triplets and quartets respectively: these terms as well as interactions between higher

numbers of ions are generally truncated owing to the dominance of the pairwise interaction.

Equation 3.1 then becomes equation 3.2,

Φa(r1. . .rn) =
n

∑
i, j=1

Φ2(ri j). (3.2)

From this point onwards, Φ2(ri j) will be written as Ei j(ri j). The form this pair potential func-

tion takes is a important factor in determining the success of the model.

3.2.2 Coulombic potential

It is a fundamental concept in science that the potential energy of a charged body will be

affected by the presence of another charged body (or more accurately, by its electric field). If

two ions i and j, with charges qi and q j respectively are separated by a distance, ri j, then their

potential energy can be expressed using the Coulomb potential:

ECoulomb
i j =

qiq j

4πε0ri j
. (3.3)

ECoulomb
i j represents the potential energy resulting from the interaction of charges on ions i

and j and ε0 is the permittivity of free space. As the magnitude of the Coulombic potential

energy decreases as a function of 1/ri j, it converges slowly, ie. the Couloumbic interaction is

long range. Whilst this term may seem very simple to calculate, the slow rate of convergence

means it is necessary to considering the influence of a great number of ions for each ion in the

system, thus placing large demands on computational resources. A method of achieving quick

convergence was devised by Ewald (a good explanation is given by Kittel [80]), which involves

partitioning the calculation into a short range real space component and a long range reciprocal

space component. The long range reciprocal component is used to mask the charges at longer

ranges thus simplifying the calculation.

The form of equation 3.3 ensures that the interaction between two like charged atoms will
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be repulsive whilst the interaction between atoms with opposite charges will be attractive. In

fact, considering the Coulombic potential alone, for two oppositely charged ions, as r → 0 Å,

Ei j(ri j)→−∞ eV . This implies that the lowest energy configuration for this system would be

for the ions to be sitting atop one another, which is clearly unphysical. Therefore, there must be

some other force coming into play, at shorter separations, to ensure that the ions do not collapse

onto each other.

3.2.3 Short range potential

At small separations (ie. less than 10 Å) the charge distributions of two adjacent ions will

begin to overlap, resulting in a repulsive force. As the separation, ri j, decreases, the extent

of this overlap is increased further, to a point at which it becomes the dominant force, thus

preventing the ions moving to occupy the same space. This repulsive force arises as a result of

the Coulombic interactions between the nuclei as well as, indirectly, from the Pauli exclusion

principle. The Pauli exclusion principle states that no two fermions may occupy the same

quantum state [81]. When electron clouds overlap the Pauli exclusion principle dictates that the

ground state charge distribution will be of a higher energy, thus increasing the electronic energy.

The earliest attempt at modeling this short range interaction was by Born and Landé [82] and

takes the form described by equation 3.4,

Esr
i j =

b
rn

i j
(3.4)

where, Esr
i j is the potential energy resulting from the short range interactions discussed above

and b and n are variables chosen to reproduce the equilibrium interionic separation; this early

work took n = 9. This model was later expanded in the light of quantum mechanical calcula-

tions, which suggested that, while it was a useful approximation, it was not universally appli-

cable. With this in mind, Born and Mayer [78] developed the short range potential described

by equation 3.5:

Esr
i j = Ai j exp

�
−

ri j

ρi j

�
(3.5)

where Ai j and ρi j are variable parameters.
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At intermediate/small separations (ie. between approximately 10+ →20 Å), although larger

than those considered above, there is an attractive force which arises from the fluctuations of

the instantaneous positions of the electrons. Consider, two ions separated again by ri j; should

the electrons in i arrange such that there is an instantaneous dipole on i, then the resultant

electric field will induce an instantaneous dipole on j. The two dipoles then attract each other

and the potential energy of the pair is lowered. Although i will change the size and direction

of its instantaneous dipole the electron distribution on j will follow it accordingly. Because of

this correlation the overall attraction between i and j is not zero. This induced-dipole induced-

dipole interaction is called either the dispersion or London interaction [16]. The strength of

this dispersion interaction depends on polarisability of i as the instantaneous dipole moment

is dependant on the polarisability of i and j as this determines how easily a dipole can be

induced upon it. London derived a general expression for the potential energy of ions i and j

by describing dipole formation as a correlated motion of the electrons in both. The result is the

London formula, shown in equation 3.6, where Ci j is again a variable parameter.

ELondon
i j =−

Ci j

r6
i j

(3.6)

By incorporating the London interactions with the models proposed by Born and Lange and

Born and Mayer we arrive at the two most commonly adopted short range potential forms.

These are the Lennard-Jones (12,6) potential [83] and the Buckingham potential [84], as shown

in equations 3.7 and 3.8 respectively.

Esr
i j =

Ai j

r12
i j
−

Ci j

r6
i j

(3.7)

Esr
i j = Ai j exp

�
−

ri j

ρi j

�
−

Ci j

r6
i j

(3.8)

The simulations conducted in this thesis use the Buckingham potential to model the short range

interactions and the pair potential parameters used are reported in later chapters. For most

cation species the orbitals are considered to be sufficiently compact that they are therefore

unlikely to undergo much polarization so the C parameter is zero, effectively reducing the

Buckingham potential to a Born - Mayer potential. A certain degree of care has to be taken
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when using the Buckingham potential because at very small separations the energy tends to

negative infinity. This is not generally a problem for simple static lattice calculations but can

be extremely significant in Molecular Dynamics (MD) simulations, which will be discussed

later.

3.2.4 The pair-potential model

The total potential energy between the ion pair i j is the sum of the Coulombic potential energy

and the short range potential energy:

ETotal
i j = ECoulomb

i j +Esr
i j (3.9)

Figure 3.1 gives an example of how the interactions discussed previously vary as a function of

ri j for a Mg2+- O2− ion pair. As shown in figure 3.1 at large values of ri j the total potential

energy is dominated by the Coulombic term, ECoulomb
i j , and then at smaller separations the short

range potential, Esr
i j , prevents the ions from collapsing in on each other.

In order to determine the overall energy for the system it is necessary to sum the interactions

between all ion pairs in the system, which is described by equation 3.10.

ESystem =
n

∑
i

n

∑
j>i

ETotal
i j (3.10)

3.2.5 Derivation of short range potential parameters

The success of any simulation based on empirically derived pair-potentials will depend on the

successful determination of the potential parameters Ai j, ρi j and Ci j. There are two methods

used to derive these potential parameters: empirical and non-empirical. Empirical potential

derivation involves adjusting the parameters to reproduce known experimental properties, such

as the lattice parameter, ionic positions and in some cases the dielectric elastic constant ma-

trix. Conversely, non-empirical potentials are developed by fitting to a potential energy surface
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Figure 3.1: Plot showing the variation in the Coulombic, short range and total potential energies as a

function of ri j for an Mg2+- O2− ion pair. The Born - Mayer potential is used here to model the short

range interactions.
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derived using a quantum mechanical technique. Non-empirical potential derivation is particu-

larly useful when there is a paucity of experiential data. In general, pair potential parameters

are derived for a specific system, which means that the potential is only tested at a single con-

figuration of ions. Whilst this approach is valid for examining the perfect lattice, once defects

are introduced the potential may not be able to reliably reproduce the lattices response, that

is, where ions shift away from their equilibrium positions. This problem can be remedied by

generating generalised potentials that are fitted to numerous systems thereby improving their

applicability to non-equilibrium structures.

3.2.6 Modeling polarisability

The effects of ionic polarisation are included in the calculations by employing the shell model

of Dick and Overhauser [85]. In this model an ion is represented by a positively charged

core (with charge X |e|) coupled to a massless, negatively charged shell (with charge Y |e|) via a

harmonic force of spring constant, k. The overall charge of the ion is then the sum of the charge

on the core and the shell (X+Y|e|). This allows the core and shell to move independently thus

simulating dielectric polarisability. An isolated atom has a polarisability, αe given by ,

αe =
1

4πε0

Y 2

k
. (3.11)

The parameters (X , Y and k) are fitted empirically to the dielectric and to a lesser extent the

elastic properties of the crystal. In the absence of an external electric field then the core and the

shell will be centred on the same point in space, however, when placed in a non-symmetrical

electric field the core and shell will move with respect to this external field. By allowing

the core and shell to move independently creates extra degrees of freedom thereby allowing

the lattice to relax into a more energetically stable state. As the core and shell are no longer

centred on the same point in space, a slight energy penalty is incurred as they move apart, this

is described by,

Eshell
i =

1
2

k.δri (3.12)

where, δri represents the separation (vector length) between the core and the shell. Figure 3.2
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provides a pictorial representation of the core and the shell.

Figure 3.2: Representation of the shell model of Dick and Overhauser [85] used to model polarisation.

(a) shows an unpolarised ion where both the core and shell are centred on the same point and in space;

(b) shows the effect of an asymmetrical field on an ion, the core and shell are now centred on two

different points in space [86].

3.3 Energy minimisation

As mentioned previously the potential parameters used in the empirical simulations are ob-

tained by fitting to either experimental or quantum mechanical data. It is, however, extremely

unlikely that the potential parameters will be capable of exactly reproducing either the exper-

imental crystal structure or the structure predicted by quantum mechanics. This means that

before energies can be calculated the crystal must be allowed to relax to the lowest energy

configuration dictated by the potentials used. The reason this must be carried out prior to

calculating the energy of the lattice, or any defects, is that there will be an energy change asso-

ciated with this process that is not related to the energy desired. Whilst it is expected that the

lowest energy configuration determined using empirical potentials and the experimentally ob-

served structure will not be identical it is important to ensure that any discrepancy is minimised

by choosing suitable potential parameters.

During an energy minimisation all the ionic interactions are calculated and each ion subse-

quently moves a distance proportional to the force acting on the particle in the direction of

the net field. Energy minimisation calculations can be conducted in one of two ways. The

first is to maintain a constant volume, whereby the minimum energy is determined by ionic

co-ordinates whilst only considering the strains on the individual ions. The other is minimisa-

tion at a constant pressure which involves determining the minimum energy by adjusting both
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ionic co-ordinates and the unit cell parameters. An energy minimisation carried out at a con-

stant pressure is significantly more computationally demanding, however, it has become the

standard and is used in this thesis unless otherwise mentioned.

The minimisation technique employed in the simulations presented in this thesis are based

on the Newton-Raphson method. Considering a simplistic case with a 2D potential energy

surface, which can be assumed to be quadratic, the second order expansion for the energy can

be described by,

E(x+δx) = E +δE = E(x)+
dE(x)

dx
δx+

1
2

δx
d2E(x)

dx2 δx (3.13)

At a minimum the change after a step should be zero, ie.

δE =
dE(x)

dx
δx+

1
2

δx
d2E(x)

dx2 δx = 0 (3.14)

giving

δx =−2

�
dE(x)

dx

�

�
d2E(x)

dx2

� . (3.15)

This means that the search direction on the surface depends on both the first and second deriva-

tives of the potential energy surface. In higher dimensions the second derivatives gives rise to

the Hessian matrix, H. Equation 3.15 then becomes,

δx =−2H−1g (3.16)

where g is the gradient vector. The equation above shows that matrix inversion is involved

in this method, which can make it computationally demanding. However, near a minimum,

real potential energy surfaces can be described as roughly quadratic meaning that the Newton-

Raphson technique can achieve quick convergence. For large systems the calculation and inver-

sion of the Hessian may be impractical so intermediate techniques such as Broyden, Fletcher,

Goldfard and Shanno (BFGS) [87] method that updates H−1 directly are used.
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3.4 Defect calculations

Once the lattice has been relaxed into a state of mechanical equilibrium it is possible to in-

vestigate the effects of introducing defects on the local environment, as it is, ultimately, the

behaviour of these defects that influence a materials performance. The defect energy can be

defined as the energy difference between the lattice containing the defect and the perfect lattice

plus the defect at an infinite separation. Some of the earliest defect calculations, looking at

how to introduce charged defects [88], concluded that it was essential to calculate the polari-

sation response of the lattice to the defects presence. This idea was taken forward by Mott and

Littleton [89], who proposed a two region approach to calculating defect energies. Firstly, an

inner region containing the defect itself, which is treated atomistically using energy minimisa-

tion and an outer region where a continuum approximation is sufficient. The explicit atomistic

technique used in the inner region is essential because of the strong forces that the defect will

impart on the atoms nearest to it.

In contrast, for the more distant weak field regions, the defect forces are relatively weak and

lattice relaxation may be treated using a more approximate method. The Mott and Littleton

approach, appropriate to ionic materials, calculates the polarization, P, per unit cell using the

continuum approximation:

P =
V qr
r3 (1− ε−1) (3.17)

where, V is the unit cell volume and ε is the static dielectric constant. Equation 3.17 is strictly

only valid for dielectrically isotropic systems, however, this approach can be extended to

anisotropic systems [90]. Formally, the calculated polarization can then be broken up into

atomistic components and the defect energy can be obtained using,

E(x,y) = EI(x)+EI−II(x,y)+EII(y) (3.18)

In equation 3.18, x and y are the co-ordinates of the ions in region I and the displacements of the

ions in region II respectively, the terms EI and EII are the energies arising from the interactions

within each region and EI−II is the interaction energy between the two regions. If the size of
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the innermost region is large enough, then we can assume that the outermost region consists of

perfect crystal with harmonic displacements so that,

EII(y) =
1
2

yAy (3.19)

where, A is the force constant matrix. Applying the equilibrium condition to region II gives,

�
δEI−II(x,y)

δy

�

x
=−Ay (3.20)

which can then substituted into 3.19 and 3.18 to yield,

E(x,y) = EI(x)+EI−II(x,y)+−1
2

�
δEI−II(x,y)

δy

�

x
·y. (3.21)

As can be seen from equation 3.21, the energy of the defect is no longer explicitly dependent

on EII , which is computationally convenient.

The procedure for calculating a defect energy is then to relax region I using energy minimisa-

tion, followed by calculation of the displacements in region II by the Mott-Littleton methodol-

ogy and then the resulting values of EI and EI−II and the derivative of the later [91]. Figure 3.3

gives a pictorial representation of the Mott-Littleton [89] methodology.

There have been numerous attempts at determining the reliability of the Mott-Littleton ap-

proach by comparing with data obtained using quantum mechanical simulations, an excellent

comparison is given in [93].

3.5 Defect volume calculations

When a defect is introduced into a crystal there will be a characteristic change in the overall

volume as the lattice relaxes to accommodate it. Catlow et al. [94] developed a method of

calculating the change in volume within the Mott-Littleton methodology. The defect relaxation

volume, v, is given by,
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Figure 3.3: Pictorial representation of the Mott-Littleton regions [92].

v =−KTVC

�
δ fv

δVC

�

T
(3.22)

where, KT (Å3 eV−1) is the isothermal compressibility, VC is the unit cell volume of the perfect

lattice and fv is the defect formation energy determined using the Mott-Littleton approach.

Therefore,
�

δ fv
δVC

�

T
is the change, for a given temperature, in the Helmholtz defect formation

energy as a function of change in the unit cell volume.

For a cubic crystal, the isothermal compressibility can be obtained from the elastic constants,

using,

KT =
�

1
3
(c11 +2c12)

�−1

(3.23)

where, c11 and c12 are components of the elastic constant matrix.
�

δ fv
δVC

�

T
can be obtained

by plotting the defect energy as a function of the lattice parameter, a, under constant volume

conditions (ie. only the lattice positions can relax, the cell dimensions remain constant), then
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solving equation 3.24,

�
δ( f )v

δVC

�

T
=

1
3a2

�
δ fv

δa

�

T
(3.24)

since,

�
δ( f )v

δVC

�

T
=

�
δ fv

δa

�

T

�
δa

δVC

�
=

�
δ fv

δa

�

T

�
δVC

δa

�−1

=
�

δ fv

δa

�

T

�
δa3

δa

�−1

(3.25)

A negative defect volume implies that the crystal has shrunk upon introduction of the defect,

however, a positive defect volume means the lattice expands in order to accommodate the

defect.

3.6 Molecular dynamics

The Molecular Dynamics (MD) simulations described in this section do not form a prominent

part of this thesis, however, it is necessary to have a basic grasp of the fundamental ideas

and concepts as they underpin the long scale dynamical method, Temperature Accelerated

Dynamics (TAD), which is used later.

Molecular dynamics proceeds by solving Newton’s equations of motion to predict the be-

haviour of atoms within a given supercell. The crystal lattice is represented using a supercell

(formed from a number of unit cells) which is iterated through space. In addition to being

assigned a position, each ion is also assigned an initial velocity with a random direction and

a magnitude that is (on average) representative of the temperature of interest. An ion in the

system at, x0, with an initial velocity, u, will feel a force, F , as a result of interactions with

surrounding ions. According to Newton’s second law the force acting on the ion will cause it

to accelerate in the direction of the overall force with a magnitude which can be determined

using:

a =
F
m

. (3.26)

43



CHAPTER 3. Methodology

The magnitude and direction of this force can be determined using either a pair potential ap-

proach or quantum mechanically, and the mass, m, of the ion. If x then moves under the

influence of force, F , for a period of time, τ, then its new velocity, v, is given by,

v = u+
Z τ

0

F
m

dt = u+
F
m

τ. (3.27)

However, the velocity itself is the rate of change of atom position, x. Equation 3.28 shows this

relationship between velocity and position.

v =
dx
dt

(3.28)

The final location of an ion can be found by integration as shown by,

x = x0 +
Z τ

0

dx
dt

dt = x0 +
Z τ

0

�
u+

F
m

τ
�

= x0 +uτ+
1
2

F
m

τ2. (3.29)

With these simple relationships it is possible to follow the evolution of a lattice as a function

of time elapsed. At a given value for τ the positions of the ions can be used to determine the

force acting on each of the ions in the system. From this force it is possible to calculate an

acceleration, which can in turn be used to determine each ion’s velocity and then finally their

new positions. By following this procedure it is possible to ‘watch’ the ions move.

There is obviously a very significant assumption being made, that is, the force experienced by

each ion does not change during each timestep. By making each timestep as small as possible

this error can be reduced, as, ensuring that the ion movement is small, the change in the force

on an ion will not be significantly altered from its original state. The solution to this problem

is to use timesteps that are as small as is computationally tractable (typically 10−15 seconds)

as well as ensuring that the simulation can also produce data on a relevant timescale. Another

method of reducing the error at larger timesteps is to examine higher order expansions of the

position, ie.

x = x0 +uτ+
1
2

F
m

τ2 +
...x
m

τ3 . . . (3.30)
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where, ...x is the third derivative of the position. Whilst considering the higher order terms may

yield greater accuracy, it leads to an increase in the computational demand. It is also possible

to use information from previous timesteps to determine future positions. The position of any

atom at a time t + τ can be obtained using,

x(t + τ) = x(t)+u(t)τ+
1
2

F(t)
m

τ2 +
...x (t)

m
τ3 . . . . (3.31)

It is equally valid to back track in time by taking a negative timestep with the result being,

x(t− τ) = x(t)−u(t)τ+
1
2

F(t)
m

τ2−
...x (t)

m
τ3 . . . . (3.32)

By adding these two terms together and rearranging it is possible to eliminate the velocity

term, thus negating the need to calculate this quantity when determining how ion positions will

evolve. This is shown in equation 3.33, which is known as the Verlet algorithm [95].

x(t + τ) = 2x(t)− x(t− τ)+
F(t)

m
τ2 (3.33)

The trajectory described by the Verlet algorithm will more accurately represent the ‘real’ tra-

jectory than the simple expressions for x because the third order terms have been included but

merely cancel each other out. It should also be noted that as the Verlet algorithm effectively

measures the change in position over two timesteps, the timesteps should be made smaller.

There are a number of ensembles in which MD simulations can be conducted. Conceptually the

simplest ensemble in statistical mechanics is the microcanonical ensemble which represents a

thermodynamically isolated system (ie. the number of particles, N, volume, V, and the overall

energy of the system are all kept constant). If the system is connected to a heat bath, ensuring a

constant, T, then the microcanonical (N, V, E) ensemble is replaced with a (N, V, T) canonical

ensemble. Connection to a pressure reservoir via a piston gives the constant enthalpy ensemble

(N, P, H), whilst connection to a diathermic piston with constant T and P gives the (N, P, T)

ensemble. All of these ensembles can be examined using MD but the microcanonical ensemble

is by far the most common [96].
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3.7 Temperature accelerated dynamics

Owing to the requirement for MD simulations to have timesteps on the order of femto seconds

it is extremely difficult, even for today’s fastest processors, to reach timescales greater than

a tenth of a microsecond. There are numerous methods, derived from transition state theory,

for accelerating molecular dynamics simulations of infrequent event systems. These methods,

hyperdynamics [97], parallel replica dynamics [98], temperature accelerated dynamics [99] and

kinetic Monte Carlo [100], are capable of reaching simulation times many orders of magnitude

greater than traditional MD whilst still retaining full atomistic detail.

The starting point for temperature accelerated dynamics is to define our system as an infre-

quent event system. An infrequent event system is one in which the dynamical evolution can

be described as vibrational excursions within a single minima on the potential energy surface

punctuated by occasional transitions, across a dividing surface, to another minima on the sur-

face. These transitions are referred to as infrequent as the time between events is many vibra-

tional periods (in some cases many orders of magnitude longer). Figure 3.4 gives a simplified

example of an infrequent event system.

Whilst there may be a large number of different crossings of the dividing surface between

two states, the trajectory only ‘sees’ the particular crossing it is making. Nevertheless, the

trajectory chooses an escape direction with the correct probability (relative to other possible

escape directions), despite having no prior information about the other possible crossings. It is

assumed here that these crossings are infrequent, however, it is possible for two such events to

occur within a few vibrational periods. These successive events are called correlated dynamical

events [21]. Here we presume that these correlated dynamical events do not occur (this is a

fundamental assumption in transition state theory), which is a very good approximation for

solid state diffusion processes [101]. This also means that when the trajectory leaves a state it

will have no ‘memory’ of how it entered that state.

The rates for transitions between states depend sensitively on the temperature; when the tem-

perature is raised all processes occur more quickly. Therefore, by conducting an MD simulation

at a higher temperature the dynamical evolution of the lattice will occur more quickly. The time

at which an event occurs could then be determined at the higher temperature and then scaled

back to yield a representation of the waiting time at the lower temperature. Unfortunately, not
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Figure 3.4: Illustration of an infrequent event system (reproduced from [22]). The trajectory explores

the well on the potential energy surface for a time scale of many vibrational periods. At some point in

time, when enough energy has been localised in one reactive mode, the trajectory crosses the dividing

surface and enters a new state. During the brief period of excitation, during which this process occurs,

it is possible for the trajectory to re-cross the dividing surface, otherwise it will settle into the new state.

only do the rate constants change as a function of temperature but the ratio of a high-barrier

rate to a low-barrier rate constant also increases. It is, however, possible to correct for this

temperature induced bias. Therefore the essence of a TAD simulation is to conduct an MD

simulation at high temperature and determine the waiting time for an event at this higher tem-

perature, then filter out some of the transitions and only allow those that should occur at the

original temperature.

To conduct a TAD calculation a special kind of MD simulation, called basin-constrained MD,

is used. In a basin-constrained MD simulation the trajectory is constrained to a particular

potential energy basin. When the system tries to make the transition from one state to the next

the trajectory is reflected back into the original state. It is not necessary to know the location of

the dividing surface before this can be achieved, it is merely necessary to be able to detect that

a transition has taken place. Detecting whether a transition has occurred or not is achieved by

stopping the high temperature MD simulation at regular intervals and then relaxing the system

using energy minimization. If the system relaxes back to the initial state then no transition has

taken place and the simulation is allowed to continue. Should a transition have occurred (ie. the
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relaxed structure is not the same as the initial state), then the Nudged Elastic Band (NEB) [102]

technique is used to determine the activation energy for the process, and the waiting time for

the transition at high temperature is recorded. The trajectory then continues from a point just

before the dividing surface but with all the atom’s velocities reversed, as shown in figure 3.5.

Figure 3.5: Illustration of the TAD procedure (reproduced from [99]). A two dimensional potential

energy surface is indicated using the thin contour lines. The dashed line, DS, then marks the dividing

surface between two states, A and B. The thick black line represent the high temperature MD trajectory.

Between the points X1 and X2 the trajectory crosses the dividing surface. An energy minimisation, start-

ing from X1 will relax back to the initial state with a minimum at XA, however, an energy minimisation

from X2 will relax to the minima XB. The saddle is found by defining a discretised path connecting the

points XA, X1, X2 and XB which is then optimized using the NEB technique. The original high tem-

perature trajectory, TMD, is then reflected from X1 by reversing all the velocities to give TBC. Finally, a

Langevin thermostat injects noise into the trajectory to ensure that it does not retrace its previous path.

As first order kinetics are expected for our infrequent event system, the waiting time, t, for a

particular transition is exponentially distributed with a probability distribution,

fi(t)dt = ki exp−kit dt (3.34)

where ki is the rate constant. The rate constant can be assumed to display Arrhenius like
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behaviour as shown in equation 3.35.

ki = vi exp−βEa,i (3.35)

In equation 3.35, vi is the temperature independent pre-exponential factor (the components

of this pre-exponential factor are discussed in section 2.2.3), Ea,i is the activation energy for

process, i, and β is equal to 1/(kBT ).

Consider a process, i, at two different temperatures, Thigh and Tlow (where Tlow ≤ Thigh) with

corresponding rate constants ki,high and ki,low. Since, as mentioned previously, the waiting

times, ti,low and ti,high are exponentially distributed, it follows that the products ki,lowti,low and

ki,highti,high have identical distributions, ie.

ki,highti,high = ki,lowti,low (3.36)

which, combined with equation 3.35 and rearranging yields an expression that allows the ob-

served high temperature waiting time to be extrapolated to give the low temperature waiting

time.

ti,low = ti,high expEa,i(βlow−βhigh) (3.37)

Once the transition has been detected, the activation energy for the process found, and the low

temperature waiting time determined, the trajectory is left to follow the reflected path away

from X1 until it finds another transition at which point the process begins again. This process

is repeated until at some time ti,high the high temperature MD simulation is stopped (a criterion

for ceasing the high temperature MD will be discussed below). At this point the transition with

the shortest waiting time at the lower temperature is accepted and the system moves to this new

state, at which point the whole simulation starts again. This process is illustrated in figure 3.6.

When conducting a TAD simulation it is essential that the high temperature MD simulation is

run for a long enough time to determine the transition with the shortest waiting time at the low

temperature. To achieve this it is assumed there is a lower bound, vmin, on the prefactor for
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Figure 3.6: Schematic illustration of the TAD method (reproduced from [22]). The progress of the

high temperature MD simulation is followed by tracing down the line marked Thigh time and a detected

transition is marked with a solid circle. When a transition occurs during the high temperature basin-

constrained MD simulation the waiting time is transformed (arrow) into a low temperature waiting time.

Plotted in this Arrhenius-like form, the transformation is a simple extrapolation along a line whose slope

is the negative of Ea,i for that event. The dashed termination line connects the shortest-time transition

recorded so far on the low temperature time line with the confidence modified minimum pre-exponential

(v∗min = vmin/ ln(1/δ) on the y axis). Where this line intersects Thigh time gives thigh,stop.
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the system. Based on this assumption it is possible to quantify a MD simulation time, thigh,stop,

such that there is only a small probability of a new transition occurring with an extrapolated

escape time shorter than tlow,short . It follows from examining figure 3.6 that if a transition that

occurs later than thigh,stop is to have an extrapolated waiting time shorter than tlow,short then the

barrier for this transition must be lower than Ex = ln(tlow,short/thigh,stop)/(βlow−βhigh). Should

the energy barrier be greater than Ex then the waiting time will extrapolate to greater than

tlow,short and so is not a concern. Using this information and introducing a probability term, δ,

allows the required high temperature MD simulation time to be found using,

thigh,stop =
ln(1/δ)

vmin

�
vmintlow,short

ln(1/δ)

�βhigh/βlow

. (3.38)

For example, if δ=0.0001 indicates a simulation time required to be 99.9% confident that no

new transition exists with a waiting time shorter than tlow,short . As equation 3.38, shows it is

possible to combine vmin and δ into a single term, however, it is more transparent to keep them

separate. The effect of stopping the high temperature MD simulation at a relatively short time

is that high barrier transitions tend to be accepted too frequently over low-barrier transitions.

By choosing vmin and δ carefully it is possible to ensure that an incorrect transition is only

accepted rarely.

3.8 Quantum mechanics

3.8.1 The Schrödinger equation and the Hamiltonian

An exact theory for a system of ions and interacting electrons is inherently quantum mechanical

and is based on solving the many-body Schrödinger equation of the form,

HΨ([RI;ri]) = EΨ([RI;ri]) (3.39)

where, H is the Hamiltonian operator [16], Ψ([RI;ri]) is the many-body wavefunction of the

system and E is the energy of the system. The Hamiltonian operator contains all of the kinetic
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and potential energy operators arising as a result of the the ion-ion, electron-electron and ion-

electron interactions. Equation 3.40 describes how the total kinetic energy of the system is the

sum of the kinetic energies of each particle (ion or electron) in the many-body system.

KE =−∑
I

�2

2MI
∇2

RI
−∑

i

�2

2me
∇2

ri
(3.40)

Here, � is Planck’s constant, h, divided by 2π, MI is the mass of the ion, I, me is the mass of

the electron and {RI} and {ri} are the positions of the ion and the electrons. Arising as a result

of the interactions of the charges in a system the potential energy can be described by,

PE =−∑
iI

ZIe2

| RI− ri |
+

1
2 ∑

i j( j �=i)

e2

| ri− r j |
+

1
2 ∑

IJ(J �=I)

ZIZJe2

| RI−RJ | . (3.41)

The −∑
iI

ZIe2

| RI− ri |
term in equation 3.41 is an attractive term, which accounts for the attrac-

tion between the electrons in the system with its constituent ions, whilst the 1
2 ∑

i j( j �=i)

e2

| ri−R j |

and 1
2 ∑

IJ(J �=I)

ZIZJe2

| RI−RJ | terms represent the repulsive electron-electron and ion-ion interactions.

Based on the huge disparity in the mass between ions and electrons it is intuitive to consider the

ions as moving very slowly and the electrons ‘instantaneously’ responding to any ionic motion.

By separating the ionic and electron motions it is possible to construct ψ, such that it has an

explicit dependence on the electron positions alone; this is known as the Born-Oppenheimer

approximation [103]. Consequently, it is possible to ignore the kinetic energies of the nuclei

and also to discount the ion-ion interactions as this will be constant for any given electron.

Taking these approximations into account the Hamiltonian can be described by equation 3.42,

shown below,

H =−∑
i

�2

2me
∇2

ri
+∑

i
Vion(ri)+

e2

2 ∑
i j( j �=i)

1
| ri− r j |

(3.42)

where, Vionri is the ionic potential felt by every electron, i.
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3.8.2 The Hartree and Hartree-Fock approximations

Owing to the introduction of the Born-Oppenheimer approximation it is only necessary to

construct ψ based on the electron positions. The simplest way to achieve this, is to treat the

electrons as a series of non-interacting particles, as shown in equation 3.43,

ψH({ri}) = φ1(r1)φ2(r2) · · ·φN(rN) (3.43)

where, φi(ri) represent the normalised wavefunctions of the individual electrons. This simple

model is called the Hartree approximation and the energy of a system can be expanded to give,

EH = �ψH | H | ψH� (3.44)

= ∑
i
�φi |

−�2∇2
r

2me
+Vion(ri) | φi�+

e2

2 ∑
i j( j �=i)

�φiφ j |
1

| r− r� | | φiφi� (3.45)

where, �ψH | H | ψH�, in Dirac bracket notation [104], is a short hand way to represent the

integral,
R

ψHHψHdτ which represents the expectation value for the Hamiltonian energy of a

system described by ψH [105].

Using a variational argument the single-particle Hartree equations can be given as,

�
−�2∇2

r
2me

+Vion(ri)+ e2 ∑
j �=i
�φ j |

1
| r− r� | | φ j�

�
φi(r) = εiφi(r) (3.46)

where the constants εi are Lagrange multipliers introduced to take the normalisation of the

single-particle wavefunctions into account. Each orbital, φi(ri), can then be determined by

solving the Schrödinger equation, assuming all φ j(r j) are known. As this is not the case, a set

of φi’s is assumed and the problem is resolved iteratively until the input and output orbitals are

self consistent, for an example of this process refer to page 45 of [106].

There are, however, two rather severe approximations included in this simple approach. Firstly

it ignores the fact that electrons are fermions. The Pauli exclusion principle, with a single-

valued many-particle wavefunction, is equivalent to the assumption that the wavefunction is an-
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tisymmetric. Combining the Hartree-type wavefunctions to form a properly anti-symmerterised

wavefunction for the system gives the Slater determinant [107], shown in equation 3.47:

ψHF({ri}) =
1√
N!

φ1(r1) φ1(r2) · · · φ1(rN)

φ2(r1) φ2(r2) · · · φ2(rN)
...

...
...

φN(r1) φN(r2) · · · φN(rN)

(3.47)

This approach, called the Hartree-Fock approximation has the desired effect, as when two elec-

trons ‘exchange’ positions then the determinant changes sign. Following a similar methodology

to that employed in the Hartree approximation, the single-particle Hartree-Fock equations are,

�
−�2∇2

r
2me

+Vion(ri)+ e2 +V H
i (r)

�
φi(r)− e2 ∑

j �=i
�φ j |

1
| r− r� | | φi�φ j(r) = εiφi(r) (3.48)

This equation has one extra term compared to the equivalent Hartree single particle equation,

the last of which is known as the ‘exchange’ term.

Despite this added level of sophistication there is still one significant approximation contained

within the Hartree and Hartree-Fock approaches. In both instances each electron is said to

move in the mean field of the other electrons. This is clearly a simplification, as the electron

interactions will depend explicitly on the positions of other electrons in the system. This ap-

proximation is referred to as neglect of ‘correlation’ [108]. Including the effects of correlation

into first principles simulations, while ensuring that the method is computationally tractable,

has led to the development of an entirely different approach to building the wavefunction.

3.8.3 Density functional theory

The density functional

Density functional theory (DFT) was developed in a series of seminal papers by Hohenburg,

Kohn and Sham [109, 110]. The underlying concept is to reformulate the problem in terms of
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the total density, n(r), of the electrons rather than by dealing with the many-body wavefunc-

tion, ψ({ri}). n(r) is defined in equation 3.49 [106]. Unlike, the Hartree and Hartree-Fock

approaches, DFT avoids introducing the approximations associated with the many-body wave-

functions, the single-particle equations can be developed in an exact manner.

n(r) = N
Z

Ψ∗(r, . . . ,rN)Ψ(r, . . . ,rN)dr2 . . .drN (3.49)

The key concept in DFT is that the density, n(r), is a unique function of the external potential,

V (r), which in turn is identified by the ionic potential (this will be examined later). As the

external potential determines the wavefunction, the wavefunction must also be a function of

the density. The other terms, which form part of the Hamiltonian, other than V (r), are the

kinetic energy, T , and the electron-electron interaction, W . As the kinetic energy and electron-

electron interactions are common to all solids, they can be described as by a universal function

with explicit dependence on the electron density, that is,

F [n(r)] = �Ψ|(T +W )|Ψ�. (3.50)

The total energy of a system can then be described by equation 3.51, and it can be shown,

using variational theory, that this functional attains a minimum for the correct density n(r) for

an external potential V (r).

E[n(r)] = �Ψ|H|Ψ�= F [n(r)]+
Z

V (r)n(r)dr (3.51)

Using the one-particle and two-particle density matrices, denoted by, γ(r,r�) and Γ(r,r�|r,r�)

respectively, (the physical significance of these terms is explored on pages 536-537 of [106])

an explicit expression for E(n) can be obtained,

E[n(r)] = �Ψ|H|Ψ�=− �2

2me

Z
∇2

r�γ(r,r�)|r�=rdr

+
Z Z e2

|r− r�|Γ(r,r�|r,r�)drdr�+
Z

V (r)γ(r,r�)dr). (3.52)
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Again this expression can be reduced to a set of single-particle equations, however, this time the

single particle states do not correspond directly to the electrons, as in the Hartree and Hartree-

Fock approaches. Rather, they represent fictitious fermion particles with a density identical to

that of the electrons. Equation 3.53 describes the single-particle equations,

�
− �2

2me
∇2

r +V e f f (r,n(r))
�

φi(r) = εiφi(r) (3.53)

where,

V e f f (r,n(r)) = V (r)+ e2
Z n(r�)

|r− r�|dr�+
δEXC[n(r)]

δn(r)
(3.54)

and EXC[n(r)] describes the exchange-correlation interactions contribution to the effective po-

tential. Unfortunately, an exact form, derived from first-principles, for EXC[n(r)] has not been

developed, however, some simplified approximate functions have been developed and applied

with considerable success.

Exchange-correlation functionals

The simplest approximation to EXC[n(r)] is known as the Local Density Approximation (LDA)

[110], which states that, for each infinitesimal element of density, n(r)dr, the exchange corre-

lation energy is that of a uniform electron gas. Clearly, this is an approximation, as the charge

density surrounding an atom is highly non-uniform. An attempt to improve upon the LDA, by

accounting for spatial variations in the density, is provided by the Generalised Gradient Ap-

proximation (GGA) [111]. In the GGA approach, the exchange correlation energy is modified

to include a dependence on the gradient of the density.

The ionic potential

In order to solve the single-particle equations, however, they may have been generated, it is

necessary to specify the ionic potential. When modeling properties of solids it is intuitive to

consider only the valence electrons, therefore it is possible to separate the electron density into
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core and valence parts. The electron density in the core is largely unaffected by the valance

states, however, beyond the core region the electron density is dominated by the valence states.

Based on this observation it is possible to take the core electrons out of the picture and develop

a smoother (ie. simpler) potential for the valance electrons. This approach is known as the

‘pseudopotential method’ [112], and its application is a corner stone in achieving computation-

ally tractable DFT simulations for large numbers of atoms [113]. Figure 3.7, shows a schematic

representation of the pseudo-wavefunction and pseudopotential.

Figure 3.7: Schematic illustration of all electron (solid lines) and pseudoelectron (dashed lines) and

their corresponding wave functions. rc is the cutoff radius beyond which the wavefunction and the

potential are not affected (reproduced from Payne et al. [114]).
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Defects and defect clusters in spinel

Aspects of this work have previously been published in Solid State Sciences [75].

4.1 Introduction

An ideal crystal displays an exact stoichiometric ratio between its constituents, where each ion

is situated on the appropriate lattice site and each lattice site is occupied by the appropriate

ion. Such a crystal can only be in ‘true equilibrium’ at 0 K, as at any temperature greater than

this, there is a finite probability of a lattice ion having enough energy to leave its lattice site,

generating vacancy, interstitial and/or antisite defects. It is for this reason that ideal or perfect

crystals are never observed, ie. all ionic crystals (and in fact all solids) will contain some level

of intrinsic point defects. Many of the important properties of ionic crystals are influenced

and often determined by the defect structure and particularly by the properties of the point

defects [115]. It is not merely the concentration and structure of the isolated point defects

themselves that can determine a material’s properties but also the interactions between them.

Voids are examples of large formations of point defects, clustering together and becoming

visible on a microscopic level and creating the possibility of a serious mechanical failure.

The way in which a material is processed has a significant impact on the concentration and

distribution of point defects within a solid, however, there is a thermodynamic driving force to

achieve a state of equilibrium at a given temperature. Thermodynamics is not the only factor

controlling the concentration of point defects, kinetics can also play a significant role. An-
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nealing processes, such as interstitial-vacancy recombination, require that either the vacancy

or interstitial defects are mobile enough to move through the lattice and annihilate. Migration

through the lattice can be considered to involve millions of tiny ‘hops’ each of which has an

associated migration energy, Em. If the migration energy for any of the necessary ‘hops’ is

particularly high then point defect recombination will be retarded; this is known as kinetic hin-

derance. Defects can also be introduced into an ionic lattice by bombardment with high energy

particles, such as neutrons, protons or heavy ions. Elastic collisions between the bombarding

particle and a lattice ion may transfer energy to displace the lattice ion. For example, MD sim-

ulations by Smith et al. [73] show how the transfer of energy from the bombarding particle to

a lattice atom can lead to the formation of a large disordered region.

In this chapter, atomistic simulation techniques have been employed to investigate the ther-

modynamics of intrinsic point defects in spinel (kinetics will be considered in later chapters).

Initially the point defects are treated in isolation, ie. a perfect crystal containing one defect (this

is known as the dilute limit). The relative concentrations of the intrinsic point defects, in a fully

equilibrated spinel, can then be predicted by comparing the reaction energies for the disorder

processes. This approach is then extended to examine how antisite defects cluster together and

finally to investigate the stability of some of the more exotic small defect clusters observed in

the MD cascade simulations of Smith et al. [73].

4.2 Methodology

The simulations presented in this chapter are a mixture of classical pair potential simulations

and, where applicable, DFT calculations. For the classical pair potential simulations a full

charge model was adopted (ie. Mg2+, Al3+ and O2−) and short range interactions were de-

scribed using the Buckingham potential form (equation 3.8). The Ai j, ρi j and Ci j parameters

for these are reported in table 4.1. Previously, in addition to the cascade simulations of Smith

et al. [73] this set of potentials have been used successfully to model the decrease in lattice

parameter as a function of inversion [50] as well as defect evolution [116].

In addition to these potential parameters the shell model of Dick and Overhauser [85] was

adopted to simulate polarisation of the O2− anions. Here, a core with a positive charge of 0.8

|e| is ‘attached’ via a harmonic force constant, k = 54.8 eV.Å−2, to a shell of charge -2.8 |e|.
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Table 4.1: Short range Buckingham potential parameters used to model spinel [73].

Species Ai j /eV ρi j /eV Ci j /eV.Å−6

O2−−O2− 9547.96 0.21916 32.00

Mg2+−O2− 1279.69 0.29969 0.00

Al3+−O2− 1361.29 0.30130 0.00

This shell model has been used in all calculations presented in this thesis, unless otherwise

stated.

As detailed in chapter 3, there has been a significant increase in the use of computational

modeling to investigate the processes that occur on the atomic scale in solids. The usefulness

of computer simulation should not be underestimated, but nevertheless it is essential that, where

possible, comparisons are made with available experimental data to ensure the accuracy of the

model. In order that the simulations presented here are realistic every effort has been made to

find parallel data in the literature, both computational and experimental, with which to compare.

4.3 Results and discussion

4.3.1 Perfect lattice

In order to further justify the model employed here, the perfect unit cell was relaxed to zero

strain using energy minimization at constant pressure. Once the lattice had equilibrated into

a state of mechanical equilibrium, a number of physical properties were determined based on

the resulting structure and the results compared with similar experimental and theoretical data

found in the literature (see table 4.2).

An examination of the data given in table 4.2 shows that the lattice parameter, a, predicted by

the pair potential technique is closer to the experimentally observed value, given by Yoneda

[118], than that predicted using the quantum mechanical techniques. Unfortunately the level

of inversion present in the single crystal sample used by Yoneda et al. [118] is not reported,

however, as shown in section 2.3.3 the affect on the volume is likely to be extremely small

assuming that the level of inversion, i, is not significant. The volume predicted by the pair
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Table 4.2: Comparison of physical properties of a perfect spinel unit cell determined using the potential

model of Smith et al. [73] both with and without the shell model, DFT calculations of Yao et al. [117]

and the single crystal experimental data of Yoneda [118].

Property This Study This Study LDA/GGA Experimental

(Shells) (No Shells) [117] [118]

a /Å 8.09 8.11 8.02/8.16 8.086

V0 /Å3 529.48 533.41 515.82/543.82 528.69

c11 /GPa 367.75 405.27 273.6/256.5 282.9

c12 /GPa 234.47 212.09 149.6/133.2 155.4

c44 /GPa 178.82 186.31 150.7/142.4 154.8

Bulk Modulus /GPa 278.97 276.48 190.93/174.3 197.9

potential method is also found to be very good at reproducing the unit cell volume obtained by

experiment, with a difference of only 0.19%. There is a relatively large discrepancy between

the elastic constants obtained from the pair potential simulations and experimental techniques;

consequently, there is also a discrepancy in the bulk modulus. One explanation for this is the

use of a full charge model (ie. the ions are assigned their fully ionized charges) increasing the

energy penalty for any deviation from the equilibrium structure, as the interactions between the

charge defect and the charged ions in the surrounding lattice will be modified. Conversely, the

LDA simulations, in particular, reproduce the elastic constants closely.

Overall, as the model is intended for the calculation of lattice and defect energies, as well as

migration energies and not the calculation of parameters dependent on phonon interactions the

model is considered to be a satisfactory description of the spinel system.

4.3.2 Intrinsic defect processes

There are eight unique intrinsic defect species found in magnesium aluminate spinel, these are

the: V��
Mg, V���

Al, V••
O , Mg••

i , Al•••i , O��
i , Mg�Al and Al•Mg, all of which can be formed by one

of the Schottky, Frenkel or antisite disorder processes. The intrinsic disorder process specific

to spinel are the antisite process, shown in equation 4.1 (repeated here for convenience), the

magnesium, aluminium and oxygen Frenkel processes (equations 4.2-4.4) and the Schottky

process (equation 4.5).
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Mg×Mg +Al×Al�Al•Mg +Mg�Al (4.1)

Mg×Mg�V��
Mg +Mg••

i (4.2)

Al×Al�V���
Al +Al•••i (4.3)

O×
O�V••

O +O��
i (4.4)

Mg×Mg +2Al×Al +4O×
O�V��

Mg +2V���
Al +4V••

O +MgAl2O4 (4.5)

A list of the defect energies obtained using the Mott-Littleton [89] methodology, implemented

in the CASCADE simulation package [119], is given in table 4.3.

Table 4.3: Dilute limit defect energies in MgAl2O4 calculated via the Mott-Littleton method, both with

and without shells.

Defect Defect Energy Defect Energy

(Shells) /eV (no Shells) /eV

V��
Mg 26.70 28.09

V���
Al 56.48 57.00

V••
O 25.00 25.48

Mg••
i -15.30 -15.23

Mg••
i -V��

Mg-Mg••
i -15.87 -15.71

Al•••i -41.86 -40.97

Al•••i -V��
Mg-Mg••

i -42.78 -41.91

O��
i -13.04 -10.08

O��
i -V••

0 -O��
i -14.01 -13.00

Mg�Al 29.98 29.94

Al•Mg -28.53 28.40
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The defect energies shown in table 4.3 agree very well with some similar calculations con-

ducted by De Souza and Blak [120] who found V��
Mg=25.99 eV, V���

Al=55.60 eV and V••
O =25.44

eV. Additionally, table 4.3 gives a comparison between the isolated interstitial species, whereby

an ion is merely accommodated on an unoccupied 8b Wyckoff position, and the equivalent split

interstitial structures. In the case of magnesium and aluminium, the split interstitial structure

can be thought of as either two Mg2+ cations (for a magnesium interstitial) or one Mg2+ and

one Al3+ cations (for an aluminium split interstitial) on two of the four unoccupied 8b Wyckoff

sites surrounding a vacant tetrahedral 8a site. An idealised version of the tetrahedral site as well

as idealised split cation interstitials can be found in figure 4.1. For both cation species in spinel

the defect energy, both with and without shells, of the split interstitial species was lower than

the simple octahedral interstitial. Comparable simulations conducted by Gilbert et al. [121],

using the DFT code PLATO [122] were exchange correlation is modelled using the LDA, also

found that the formation energy for split cation interstitial defects was lower than for isolated

interstitial defects (the formation energy for Mg••
i was 7.58 eV whilst for Mg••

i -V��
Mg-Mg••

i a

value of 6.68 eV was found).

(a) (b) (c)

Figure 4.1: Split cation interstitial species in spinel. Figure (a) shows an idealised (idealised indi-

cates that the oxygen anions are shown on perfect lattice positions dictated by the Fd3m space group)

tetrahedral, 8a, site and the four transparent blue cubes represent the surrounding unoccupied 8b sites.

Figures (b) and (c) represent the split magnesium and aluminium interstitial structures respectively. In

these structures the magnesium lattice atom has become displaced and there are now two of the 8b sites

surrounding the vacancy occupied with cations.

The defect energy for the oxygen split interstitial is also lower then that obtained for the equiv-

alent octahedral interstitial defect. A pictorial representation of the oxygen split interstitial
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defect is given in figure 4.2. Gilbert et al. [121] also predict that oxygen also forms split

interstitials.

Figure 4.2: Idealised oxygen split interstitial defect, aligned along the �110� direction.

When a defect is introduced into a lattice there can be an associated change in the volume of

the crystal. The defect volumes for each of the intrinsic point defects in spinel is reported in

table 4.4.

The data shown in table 4.4 predicts, that when an ion is removed the lattice will expand. That

is, instead of the surrounding ions relaxing to fill the void left by the removal of an ion, they

actually relax away from the vacant site. This is because, by removing an ion, the attractive

electrostatic interaction drawing in the, oppositely charged, neighbouring ions is removed. An

increase in the volume of a crystal is also observed when extra ions are placed into a crys-

tal. Placing an Al3+ cation onto a tetrahedral site causes the crystal to contract owing to the

increased electrostatic attraction between the tetrahedrally co-ordinated cation and the sur-

rounding O2− ions. The opposite effect is observed when a Mg2+ cation is substituted onto an

aluminium site.

Using the defect energies given in table 4.1 it is possible to determine the reaction energies for

the intrinsic disorder equilibria discussed above. These are shown in table 4.5. For the Frenkel

processes the split interstitial defect is used to determine the reaction energy as opposed to the
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Table 4.4: Defect volumes for the intrinsic point defects calculated both with and without as shell

model.

Defect Defect Volume Defect Volume

(Shells) /Å3 (no Shells) /Å3

V��
Mg 4.44 8.42

V���
Al 9.11 9.41

V••
O 4.00 4.45

Mg••
i -V��

Mg-Mg••
i 7.90 7.90

Al•••i -V��
Mg-Mg••

i 9.43 9.67

O��
i -V••

0 -O��
i 12.23 13.60

Mg�Al 4.70 4.54

Al•Mg -4.12 -4.49

simple octahedral interstitial as they are predicted to be lower in energy.

Table 4.5: Normalised reaction energies for the intrinsic defect reactions in spinel, both with and with-

out shells and again compared with DFT results of Gilbert [121].

Reaction Reaction Energy Reaction Energy Reaction Energy

(Shells) /eV (no Shells) /eV (DFT) /eV

Schottky 5.32 5.99 3.53

Mg Frenkel 5.41 6.19 5.46

Al Frenkel 6.86 6.44 4.99

O Frenkel 5.49 6.24 4.43

Antisite 0.73 0.77 0.64

The pair potential and quantum mechanical simulations agree that the reaction energies for

the antisite process are nearly an order of magnitude lower than their corresponding Schottky

and Frenkel processes. As a consequence of this, the concentration of antisite defects will be

several orders of magnitude greater than for other point defects. The values in table 4.5 are

in a similar range to that suggested by Chiang et al. [123], who predict values in the region

4.5-7.0 eV. There is considerable disagreement between the empirical and DFT calculations.

Both empirical models (ie. with and without accounting for the affects of polarisation) suggest

that the Schottky, oxygen Frenkel and magnesium Frenkel are all very similar in energy, how-
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ever,the aluminium Frenkel is clearly higher, thus suggesting that whilst the concentration of

Mg2+ and O2− defects will be roughly equal, they will both be greater than the concentration of

Al3+ defects. Conversely, the DFT simulations of Gilbert et al. [121] predict that the Schottky

process is noticeably lower than the aluminium and oxygen Frenkel processes whilst it is the

magnesium Frenkel process which is lowest in energy.

There are many factors which could be responsible for this discrepancy. The empirircal sim-

ulations, employed to calculate the reaction energies use a full charge model, therefore when

defects are introduced into the lattice the defect is assigned a full charge which will then overes-

timate the attraction to oppositely charged neighbours. In the LDA, DFT simulations of Gilbert

et al. [121], a Bader charge analysis gives charges of 1.78, 2.56 and -1.73 |e| for magnesium,

aluminium and oxygen respectively, which suggests the use of a partial charge model may be

appropriate. Additionally, the DFT simulations may be able to detect more complex charge dis-

tributions than is possible using the empirical simulations. Although it is important to note that

DFT simulations are incapable of including Van der Waals forces. This means that when mod-

elling the attraction between defects in clusters the defects in the DFT simulations are likely

to experience less attracted to each other due to the reduction in the Coulombic interaction the

complete lack of Van der Waals attraction.

Conversely, owing to the computationally demanding nature of the DFT simulations a supercell

method was used therefore it is possible that the defects in neighbouring cells (periodic bound-

ary conditions were employed) [121] may interact, which may also affect the defect energies.

Furthermore, it is possible that implementation of GGA for modelling the exchange-correlation

energy may improve the defect, and therefore process energies, however, this has not been done

when considering defects in spinel. Where a direct comparison of the GGA and LDA has been

applied on spinel is in the prediction of the elastic constant matrix [117]. In this study Yoneda

et al. found that implementing the GGA did not lead to an improvement in the predicted elastic

constant matrix or lattice parameter compared with experimental values.

4.3.3 Intrinsic defect clustering

Overall a crystal must remain charge neutral. This means that if there is a positively charged

defect in the crystal, there must be other oppositely charged point defects elsewhere in the
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lattice to compensate. In a similar way to the attractive electrostatic force felt by oppositely

charged ions, oppositely charged defects will be attracted to each other. Consequently, it is

possible that many of the defects found in a solid will be in clusters. In the previous section it

was shown that the antisite process had a reaction energy nearly an order of magnitude lower

than the other processes. Therefore, there will be a large number of antisite defects present in

the lattice, which could form partially or fully charge compensated, clusters with each other or

with vacancy and interstitial defects.

Perhaps the easiest defect cluster to examine first is the fully charge compensated antisite pair

{Al•Mg:Mg�Al}× cluster. Figure 4.3 shows that as the separation between the defects is increased

then the electrostatic attraction between them is lessened and so the defect energy is increased.

The solid lines represent the energy of the defects when infinitely separated, and as such the

difference between the point and the solid lines is the binding energy between the two defects.

Clearly the empirical simulations predict that as the separation is increased the defect energy

tends towards the solid line. Gilbert et al.’s [121] DFT simulations predicted that at separa-

tions greater than 5.5 Å the defects are no longer bound and that it is more thermodynamically

favourable for them to occur at infinite separation. Clearly, owing to the form of the Coulombic

interaction (equation 3.3) between charged defects, the interaction energy will decrease as the

separation increases. Therefore it is surprising that the defect energy for infinitely separated

charged defects is predicted by the DFT simulations to be lower than at a separation of 5.5 Å.

Gilbert et al. [121] argue that their simulations may be detecting a complex local strain effect

that can overcome the attraction of the opposite charges. The DFT simulations here employ

a supercell method for determining the binding energies between the antisite defects, there-

fore, the pair empirical simulations should be repeated using a similar technique to determine

whether the predictions made from the DFT data arises from an image effect. In the nearest

neighbour configuration, in which both empirical and DFT techniques predicted a bound clus-

ter, the observed binding energy (ie. the difference between the points and the solids line) is

greater in the empirical case than predicted by the DFT. Again this is due to the use of a full

charge model in the empirical simulations, overestimating the electrostatic attraction between

the defects.

Interestingly, the empirical data suggests that there are two symmetrically distinct configura-

tions of the {Al•Mg:Mg�Al}× cluster where the separation between the antisite defects is 5.3 Å.

As the separations are practically identical then the electrostatic contribution to the defect en-
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Figure 4.3: Plot showing the variation in the binding energy of a {Al•Mg:Mg�Al}× defect cluster as a

function of the separation between the two defects as predicted by the empirical model and the DFT

work of Gilbert et al. [121]. The solid lines represent the energies of the defect pairs when infinitely

separated.

ergy in each case is also very similar, therefore this difference in energy must be a strain issue.

Diagram 4.4 shows the arrangement of these two different clusters. Whilst it may be difficult to

discern in figure 4.3, the empirical model both with and without shells predicts that the nearest

neighbour configuration is the lowest in energy, however, the similar energy obtained for one

of the clusters at 5.3 Å highlight the importance of considering the strain on the lattice.

The defect volume for the nearest neighbour {Al•Mg:Mg�Al}× cluster is predicted to be -0.29 Å

by a model with shells and -0.95 Å without. This data is inline with experimental observa-

tions which suggest that as the inversion is increased, the lattice parameter is decreased [43].

Conversely, by merely assuming that antisite defects are completely isolated then the lattice is

predicted to expand by 0.58 Å in the model with shells compared to an increase of 0.05 Å in

the model without shells. Consequently, this suggests that the antisite defects must be occur-

ring in clusters in spinel in order to replicate the experimentally observed decrease in lattice

parameter [43].

Table 4.6 shows the defect and binding energies for the vacancy and interstitial intrinsic defects

clustered to antisite defects. Again, a comparison with the DFT results of Gilbert et al. [121] is
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Figure 4.4: Diagram showing a Al•Mg defect (represented by the large green sphere) and two possible

second nearest neighbour Mg�Al defects, represented by the large yellow spheres and marked with an a

and b.
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made. The defect cluster energies presented in table 4.6 are for the lowest energy configuration

of the defects in the cluster. These were obtained by placing an intrinsic point defect in a unit

cell and then sampling all arrangements of the antisite defects around it.

In general, the empirical and DFT techniques both predict that as the number of antisite defects

in the clusters increases the magnitude of the binding energy is increased. A notable exception

to this is for V��
Mg binding energies determined by DFT. Gilbert et al. [121] again cite strain as

the cause for this counterintuitive behaviour. The empirical potentials overestimate the binding

energy compared with the DFT data, which is due to the full charge model overemphasizing

the electrostatic interaction between oppositely charged defects.

Considering these defect clusters in table 4.6, it is possible to construct a series of equations

analogous to the isolated Schottky and Frenkel processes; shown in equations 4.6-4.9 for dimer

clusters, equations 4.10-4.13 for trimer clusters and equation 4.14 for quatramer clusters.

Mg�Al+Al•Mg +Mg×Mg � {Mg••
i : Mg�Al}• +{V��

Mg : Al•Mg}� (4.6)

Mg�Al+Al•Mg +Al×Al � {Al•••i : Mg�Al}•• +{V���
Al : Al•Mg}�� (4.7)

Mg�Al+Al•Mg +O×
O � {O��

i : Al•Mg}�+{V••
O : Mg�Al}• (4.8)

4Mg�Al+3Al•Mg +Mg×Mg +2Al×Al +4O×
O � {V��

Mg : Al•Mg}�+2{V���
Al : Al•Mg}�� (4.9)

+4{V••
O : Mg�Al}• +MgAl2O4

2Mg�Al+2Al•Mg +Mg×Mg � {Mg••
i : 2Mg�Al}×+{V��

Mg : 2Al•Mg}× (4.10)

2Mg�Al+2Al•Mg +Al×Al � {Al•••i : 2Mg�Al}• +{V���
Al : 2Al•Mg}� (4.11)
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2Mg�Al+2Al•Mg +O×
O � {O��

i : 2Al•Mg}×+{V••
O : 2Mg�Al}× (4.12)

8Mg�Al+6Al•Mg +Mg×Mg +2Al×Al +4O×
O � {V��

Mg : 2Al•Mg}×+2{V���
Al : 2Al•Mg}� (4.13)

+4{V••
O : Mg�Al}• +MgAl2O4

3Mg�Al+3Al•Mg +Al×Al � {Al•••i : 3Mg�Al}×+{V���
Al : 3Al•Mg}× (4.14)

Using the cluster energies shown in table 4.6 it is possible to determine the reaction energies

for the processes highlighted in equations 4.6-4.14; these are shown in table 4.7.

Table 4.7: Process energies for intrinsic defect processes involving defect clusters predicted using em-

pirical pair potentials with and without shells. Also included is comparable data obtained using DFT by

Gilbert et al. [121].

Process Cluster Reaction Energy Reaction Energy Reaction Energy

(Shells) /eV (no Shells) /eV (DFT) /eV

Mg Frenkel Isolated 5.41 6.19 3.34

Dimer 4.49 5.11 3.10

Trimer 3.85 4.38 3.09

Al Frenkel Isolated 6.86 7.55 4.39

Dimer 5.38 5.78 3.98

Trimer 4.27 4.68 3.52

Quatramer 3.44 3.46 -

O Frenkel Isolated 5.49 6.25 4.43

Dimer 3.82 4.14 3.73

Trimer 2.84 2.84 3.33

Schottky Isolated 5.32 5.99 3.53

Dimer 3.90 4.31 3.08

Trimer 2.95 3.29 2.77

Table 4.7 shows that as the size of defect clusters are increased the reaction energies for the

defect processes are decreased. As antisite defect clustering lowers the energies for the intrinsic
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CHAPTER 4. Defects and defect clusters in spinel

defect reaction processes, clustering will elevate the concentration and indeed the ordering of

concentrations will be modified. In the isolated case the empirical method predicted that the

Schottky process has the lowest energy, however, when including the effects of antisite defect

clustering, the oxygen Frenkel process becomes the most favourable. Conversely the DFT

simulations predict that the magnesium Frenkel would dominate, however, assuming antisite

clustering the Schottky process is dominant.

There are a number of other dimer clusters between the intrinsic point defects that one would

expect to be bound, these are shown in table 4.8.

4.3.4 Defect clusters observed in damage simulations

The MD simulations of Smith et al. [73] also highlighted the presence of a variety of high en-

ergy, kinetically stabilised defect structures following the dissipation of a thermal energy spike.

One of the more prevalent defect clusters observed in these simulations is the, so called, ther-

mal crowdion. The thermal crowdion can be considered as an extended split cation interstitial.

In the split interstitial structure there are two cations occupying two of the 8b sites surrounding

a vacant tetrahedral, 8a, site, however, in a thermal crowdion there are two adjacent vacant 8a

sites and a cation occupying the 8b interstice located between the two vacancies. Addition-

ally there is a cation occupying one of the three remaining 8b sites surrounding each vacant

8a site. Whilst the structure is observed on the tetrahedral sublattice, this defect structure is

not merely limited to Mg2+ interstitial ions, an example of a mixed cation crowdion would be

Al•••i -V��
Mg-Mg••

i -V��
Mg-Mg••

i shown in figure 4.5.

Figure 4.5 shows that crowdion formation is, in effect, a local translation to a rocksalt structure,

a phenomenon which has been observed on a macroscopic scale [69]. Tables 4.9 and 4.10

compare the defect energies of the crowdion defect clusters and their equivalent split interstitial

defect cluster with and without shells. The MD simulations of both Smith et al. [73] and

Bacorisen et al. [74] did not include a shell model and therefore many of the crowdions in table

4.10 were not observed. Of the crowdion defects which were predicted to be thermally stable,

all were found to be higher in energy than the equivalent interstitial cluster, except when there

are three Al•••i defects sharing the two vacant tetrahedral sites, this is probably due to the large

electrostatic interaction between an Al•Mg defect and the highly positive Al•••i -V��
Mg-Al•••i defect.
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CHAPTER 4. Defects and defect clusters in spinel

Figure 4.5: Idealised illustration of a Al•••i -V��
Mg-Mg••

i -V��
Mg-Mg••

i crowdion defect cluster. The trans-

parent yellow cubes represent the two adjacent vacant tetrahedral lattice sites, the larger yellow and

green spheres represent the Mg2+ and Al3+ cations respectively and the transparent blue cubes are the

unoccupied 8b sites.
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Also, the Mg••
i -V��

Mg-Mg••
i -V��

Mg-Mg••
i crowdion defect was not locally stable and decayed to

form a split Mg••
i -V��

Mg-Mg••
i defect. In the remaining cases the differences in energy between

the split interstitials and the crowdions are very similar (ie. < 0.51 eV).

Table 4.9: Energies of formation of crowdion defect clusters and their equivalent split interstitials, the

differences in these two energies represents the relative stability of the crowdion.

Crowdion Cluster Defect Equivalent Interstitial Defect

Energy /eV Species Energy /eV

Mg••
i -V��

Mg-Mg••
i -V��

Mg-Mg••
i Unstable Mg••

i -V��
Mg-Mg••

i -15.87

Mg••
i -V��

Mg-Al•••i -V��
Mg-Mg••

i -42.60 Al•••i -V��
Mg-Mg••

i -42.64

Al•••i -V��
Mg-Mg••

i -V��
Mg-Mg••

i -42.63 Al•••i -V��
Mg-Mg••

i -42.64

{Al•Mg:Mg••
i } -43.18

Al•••i -V��
Mg-Mg••

i -V��
Mg-Al•••i -69.17 {Al•Mg:Mg••

i -V��
Mg-Al•••i } -69.68

Al•••i -V��
Mg-Al•••i -V��

Mg-Mg••
i -69.50 Al•••i -V��

Mg-Al•••i -69.59

{Al•Mg:Al•••i -V��
Mg-Mg••

i } -69.58

Al•••i -V��
Mg-Al•••i -V��

Mg-Al•••i -96.15 {Al•Mg:Al•••i -V��
Mg-Al•••i } -96.00

There was also another very interesting extended defect present after the collisional phase of

Smith et al.’s [73] cascade simulations, which is the highly symmetrical Al•••i ring. In this

defect cluster three neighbouring Al3+ cations are moved from their octahedral lattice site

and onto the neighbouring tetrahedral interstice, as shown in figure 4.6. Should this defect

occur in a region which is partially inverse then it is possible for one, or more, of the Al3+

cations to be replaced by Mg2+ cations. Table 4.11 contains the formation energies of the

various ring defects. In each case the energies are large and positive indicating that they are not

thermodynamically favourable and that they are observed as a result of large kinetic barriers

to their removal. Formation of these ring defects may prove highly beneficial in terms of

spinel’s radiation tolerance as it allows the lattice to ‘suck’ energy out of the cascade to form

these defects, which will then readily reform the perfect lattice. Gilbert et al. [121] present a

formation energy for a pure aluminium interstitial ring of 7.34 eV, although as this is a large

defect it is likely that the defect energy has not converged with the size of the cell.
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CHAPTER 4. Defects and defect clusters in spinel

Table 4.10: Energies of formation of crowdion defect clusters and their equivalent split interstitials, the

differences in these two energies represents the relative stability of the crowdion.

Crowdion Cluster Defect Equivalent Interstitial Defect

Energy /eV Species Energy /eV

Mg••
i -V��

Mg-Mg••
i -V��

Mg-Mg••
i Unstable Mg••

i -V��
Mg-Mg••

i -15.72

Mg••
i -V��

Mg-Al•••i -V��
Mg-Mg••

i -41.62 Al•••i -V��
Mg-Mg••

i -41.94

Al•••i -V��
Mg-Mg••

i -V��
Mg-Mg••

i Unstable Al•••i -V��
Mg-Mg••

i -41.91

{Al•Mg:Mg••
i } -42.56

Al•••i -V��
Mg-Mg••

i -V��
Mg-Al•••i -67.52 {Al•Mg:Mg••

i -V��
Mg-Al•••i } 68.24

Al•••i -V��
Mg-Al•••i -V��

Mg-Mg••
i Unstable Al•••i -V��

Mg-Al•••i -67.88

{Al•Mg:Al•••i -V��
Mg-Mg••

i } -68.03

Al•••i -V��
Mg-Al•••i -V��

Mg-Al•••i Unstable {Al•Mg:Al•••i -V��
Mg-Al•••i } -93.50

Figure 4.6: The aluminium interstitial ring defect cluster. The transparent green cubes represent unoc-

cupied octahedral lattice sites whilst green spheres represent the Al•••i defects.
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Table 4.11: Formation energies for the ring cluster defects. For the magnesium containing clusters it

is assumed that the Mg2+ cations are already present on the aluminium sublattice. Thus, the energy to

form the relevant number of Mg�Al defects is subtracted from the ring formation energy.

Ring Cluster Formation Formation

Energy (Shells) /eV Energy (no Shells) /eV

-Al•••i -V���
Al-Al•••i -V���

Al-Al•••i -V���
Al- 9.07 9.18

-Al•••i -V���
Al-Mg••

i -V���
Al-Al•••i -V���

Al- 8.28 8.11

-Al•••i -V���
Al-Mg••

i -V���
Al-Mg••

i -V���
Al- 8.10 7.78

-Mg••
i -V���

Al-Mg••
i -V���

Al-Mg••
i -V���

Al- 8.63 8.25

4.4 Summary

The first conclusion that can be drawn from the results presented in this chapter is that the

empirical pair potential model is capable of accurately replicating the structure and elastic

properties of spinel. Once the accuracy of the model had been firmly established it was possible

to draw the following conclusions concerning the nature of defect properties in spinel:

• Interstitial species in spinel are predicted to exhibit complex split interstitial structures

rather than existing as simple interstitial ions located at unoccupied 8b Wyckoff sites.

Both cation species form split interstitials where a Mg2+ cation is displaced from its 8a

site and two interstitial ions lie on the surrounding 8b Wyckoff sites. The interstitial is

thus aligned along a �110� direction (see diagram 4.1(c)). Similarly, the oxygen inter-

stitial also forms a split interstitial aligned along the �110� direction. This conclusion is

supported by the parallel DFT simulations of Gilbert et al. [121].

• The reaction energy for the antisite process, reaction 4.1, is an order of magnitude lower

than for the Schottky and Frenkel processes, therefore the defect chemistry of spinel is

dominated by the presence of antisite defects. This is evident from the reordering of

the thermodynamics of the Frenkel and Schottky processes when considering vacancy

& interstitial/antisite clusters. Assuming defects are at the dilute limit then the Schottky

process is lower in energy than the Frenkel processes, however, when clustering is intro-

duced the oxygen Frenkel process is lower in energy than the Schottky and remaining

Frenkel processes.
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CHAPTER 4. Defects and defect clusters in spinel

• As the level of defect clustering is increased then the energy for the Schottky and Frenkel

processes is decreased, thus there will be an increase in their concentrations, relative to

in the dilute limit.

• The extended defect clusters observed in the MD simulations of Smith et al. [73] were

shown to be metastable, but are of high energy and as such are unlikely to occur as a

result of thermal processes. Formation of these extended clusters may be an important

issue with respect to spinel’s radiation tolerance, however, it is currently very difficult to

examine this dependence explicitly. The crowdion defects resemble a localised tranfor-

mation of the spinel matrix to a disordered rock salt structure, a phenomenon that has

been observed both experimentally [71] and by simulation [72].

79



5
Cation diffusion in spinel

This work has been published in Solid State Ionics [124].

5.1 Introduction

The concentration of point defects (such as antisite defects) in a real material is related not only

to the thermodynamics of the equilibrium concentrations but also to the rate at which matter

can be transported (ie. the extent to which a state of equilibrium is reached). Consequently,

if we are to understand how defects are distributed in a spinel lattice it is essential to gain a

thorough understanding of the migration pathways that are responsible for the diffusion of the

defects. Furthermore, understanding the time dependent evolution of point defects after ra-

diation damage is of fundamental importance in understanding the processes responsible for

the excellent irradiation tolerance demonstrated by spinel. This chapter deals with the mecha-

nisms underpinning transport of cations via the intrinsic point defects discussed in chapter 4,

by determining the migration energies and the prefactor for diffusion, D0.

Whilst there is substantial work in the literature concerning cation diffusion in ceramic oxide

materials, such as MgO [125, 126] and Al2O3 [127, 128], there is comparatively little similar

quantitative data available for MgAl2O4. Nevertheless Martinelli et al. [129] concluded from

their conductivity experiments on spinel that, at 1000 oC magnesium is the more mobile cation.

Liermann and Ganguly [130] obtained an activation energy of 202 kJ mol−1 (2.09 eV) for

Mg2+ self diffusion whilst Grimes [131] predicted a value of 3.74 eV; unfortunately, there is
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CHAPTER 5. Cation diffusion in spinel

no equivalent data for Al3+ cation self diffusion. A Mg2+ � Al3+ ‘interdiffusion’ activation

energy of 234 kJ mol−1 (2.42 eV) was determined by Watson and Price [132]. Assuming that

migration of the aluminium cation is the rate limiting step in this process, as suggested by

Martinelli et al. [129], then this may be the activation energy for Al3+ self diffusion.

The work presented here focuses on the processes by which point defects can facilitate mass

transport of cations through the spinel lattice. Previously, Yasuda et al. [133] investigated the

activation energies for diffusion of vacancy point defects by following the shrinkage process of

interstitial type dislocation loops generated by irradiation. Their work estimated the migration

energy of the rate limiting vacancy defect (ie. the slowest moving) to be 2.0 eV, but were

unable to determine which type of vacancy this was. Uberuaga et al. [116] used a long time

scale dynamical technique TAD [22] to investigate the mobility of many of the intrinsic defects

found in MgAl2O4 and concluded that V���
Al migration had the highest migration energy, with a

value of 2.00 eV. This value agrees with the value that was obtained by Yasuda [133].

5.2 Methodology

Migration pathways were determined by defining a line between the initial and final positions

of the point defect or defects that mediate the migration process (ie. the interstitial ion if it

is an interstitial mechanism or the lattice vacancy if it is a lattice ion that is transported). A

grid of points was generated perpendicular to the direction of migration and then incremented

along the line joining the defect’s start and end locations (see figure 5.1). At each point in every

grid a defect calculation was conducted within the Mott-Littleton [89] framework whereby the

location of the migrating ion was fixed at that point but the surrounding ions are fully relaxed

using energy minimization. This allows the minimum energy pathway between the end points

to be unambiguously identified. The change in the system energy, ∆Esys, is then defined as

the difference between the energy of the migrating species and when fully relaxed. Whilst

this technique may appear to be computationally intensive, it allows the determination of non-

linear migration pathways and to accurately locate saddle points. This approach has previously

been successfully employed to study anisotropic oxygen diffusion in La2NiO4 [134]. In cases

where similar mechanisms were analysed, these results are comparable with similar energies

calculated using the nudged elastic band method [116].

81



CHAPTER 5. Cation diffusion in spinel

Figure 5.1: The grid methodology used to calculate the migration energies. In this example it is the

migration of an Al3+ ion into a vacant aluminium site. A defect energy calculation using the Mott-

Littleton [89] methodology is conducted with the migrating ion fixed at the points shown by the blue

points.
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Cation migration through spinel can occur via a number of different mechanisms. Recall,

there are two different cation sublattices and these are capable of supporting vacancy mediated

migration mechanisms. In addition, there is the possibility of migration between the two cation

sublattices via vacancies; these latter processes are described by equations 5.1 and 5.2.

Al×Al +V��
Mg�Al•Mg +V���

Al (5.1)

Mg×Mg +V���
Al�Mg�Al +V��

Mg (5.2)

In competition with vacancy mediated diffusion mechanisms cations can also migrate via in-

terstitial mechanisms. Chapter 4 predicted that in spinel both cation interstitial species form

complex split interstitial structures (Al•••i -V��
Mg-Mg••

i and Mg••
i -V��

Mg-Mg••
i ) around the tetra-

hedral sites, which are by far the lowest energy interstitial cation species. As a consequence

interstitial migration will be effectively restricted to the magnesium sublattice.

5.3 Results and discussion

5.3.1 Migration energies

Vacancy migration

First we consider migration of Mg2+ cations via vacancy mechanisms on the magnesium and

the aluminium sublattices. In the case of Mg2+ migrating on the aluminium sublattice we

are considering Mg�Al cation antisite migration. Figure 5.2 is a contour plot showing the total

change in the system energy, ∆Esys, as the migrating Mg2+ ion explores the (11̄2̄) plane in

the region between two vacant magnesium lattice sites. Figure 5.3 is then a plot of ∆Esys as a

function of the reaction co-ordinate (reaction co-ordinate is defined as the distance along the

vector between the initial and final locations of the defect and is a simple parameter that facil-

itates comparison of different migration processes independent of how convoluted the actual

pathway might be) for this process of Mg2+ diffusing via a vacancy mechanism on the magne-

sium sublattice. As shown in figure 5.2, the Mg2+ cation migrates along the [111] direction,
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with no deviation in the [1̄10] direction (ie. the reaction co-ordinate and the pathway happen

to be the same in this case). Also evident in both figures 5.2 and 5.3, is the presence of a

stable V��
Mg-Mg••

i -V��
Mg situated halfway along the reaction co-ordinate (which gives rise to two

equal saddle points). The migration energy for this process (ie. the saddle point) is predicted

to be 0.54 eV, which compares favourably with the value of 0.56 eV obtained by Uberuaga et

al. [116] using an NEB technique on a model without shell polarisability.

Figure 5.2: Contour plot showing the change in system energy as a Mg2+ cation migrates between two

vacant magnesium lattice sites in the (11̄2̄) plane.

A contour plot showing the change in system energy as a Mg�Al defect explores the (11̄0) plane

is shown in figure 5.4. It is evident from figure 5.4 that the migrating Mg2+ cation is forced to

deviate roughly 0.5 Å in the [001] migration owning to the local environment. Consequently,

the reaction co-ordinate and the distance along the path are now no longer identical. The change

in the energy of the system, ∆Esys, as a function of the reaction co-ordinate is shown in figure

5.5 and the migration energy for this process is predicted to be 1.03 eV (as will be described

later other steps are required for net migration but nevertheless this step is still necessary). A

comparison of these two processes reveals that migration of Mg2+ via a vacancy mechanism

will occur preferentially on the magnesium sublattice, all else (in particular concentrations)

being equal.
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Figure 5.3: Plot of the change in the energy of the system, ∆Esys, as a function of the reaction co-

ordinate for a Mg×Mg cation migrating via a vacancy process on the magnesium sublattice showing two

equal saddle points and a central metastable intermediate corresponding to a V��
Mg-Mg••

i -V��
Mg defect

configuration.

Figure 5.4: Contour plot showing the change in system energy as a Mg2+ cation migrates between two

vacant aluminium lattice sites in the (11̄0) plane.
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Figure 5.5: Plot of the change in the energy of the system, ∆Esys, as a function of the reaction co-

ordinate for a Mg�Al defect migrating via a vacancy process on the aluminium sublattice.

A similar analysis was adopted to investigate Al3+ cation migration via vacancy mechanisms.

Figure 5.6 shows a predicted deviation of 0.6 Å in the [001] direction; this is greater than

that predicted for Mg�Al migration via the same process, however, unlike in the Mg�Al case,

there is evidence of a very small metastable intermediary. The presence of this V���
Al-Al•••i -V���

Al

intermediary is more evident in figure 5.7, which shows the change in the energy of the system,

∆Esys, as a function of the reaction co-ordinate. Overall the migration energy for this process

is predicted to be 1.83 eV (a value of 2.00 eV was obtained by Uberuaga et al. [116]).

Migration of an Al•Mg defect from one vacant magnesium site to the other is very similar to the

equivalent Mg2+ process, in that there is no deviation from the reaction co-ordinate, as shown

in figure 5.8. Furthermore, there is also a stable intermediary, however, this time it is a V��
Mg-

Al•••i -V��
Mg defect cluster. The change in the energy of the system as a function of the reaction

co-ordinate is plotted in figure 5.9 and the migration energy for this isolated process is 0.88 eV.

The analysis above reveals an interesting possibility, that is, Al3+ will preferentially migrate on

the magnesium sublattice rather than its own sublattice. There are, however, a series of other

steps, in addition to the step reported in figure 5.9, in order for net Al3+ ion transport across

the magnesium sublattice to be achieved. In particular, once the Al3+ ion has moved from one

magnesium site to another, the transport-mediating V��
Mg defect must migrate around in such a
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Figure 5.6: Contour plot showing the change in the system energy as a Mg2+ cation migrates between

two vacant aluminium lattice sites in the (11̄0) plane.

Figure 5.7: Plot of the change in the energy of the system, ∆Esys, as a function of the reaction co-

ordinate for a Mg�Al migrating via a vacancy process on the aluminium sublattice showing two equal

saddle points and a central metastable intermediate corresponding to a V���
Al-Al•••i -V���

Al defect configura-

tion.
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Figure 5.8: Contour plot showing the change in the system energy as a Al•Mg migrates between two

vacant magnesium lattice sites in the (11̄2̄) plane.

Figure 5.9: Plot of the change in the energy of the system, ∆Esys, as a function of the reaction co-

ordinate for Al•Mg migration via a vacancy process on the magnesium sublattice showing two equal

saddle points and a central metastable intermediate corresponding to a V��
Mg-Al•••i -V��

Mg defect configu-

ration.
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way that it facilitates the continued migration of the aluminium ion; this process is illustrated in

figure 5.10 (this process is analogous to impurity diffusion in Si [135]). The energy landscape

for Al3+ transport is then shown in figure 5.11, from which it is clear that the rate determining

step is indeed the motion of the Al3+ ion itself, confirming that the overall migration energy

for aluminium transport on the magnesium sublattice via a V��
Mg mechanism is 0.88 eV.

As discussed in chapter 4, magnesium aluminate has an antisite formation energy that is low

compared to other defect formation processes [75,136]. In order to facilitate changes in antisite

defect concentrations, cations must be transported between the two sublattices. This can be

achieved if a vacancy is transferred from one cation sublattice to the other, as described in

equations 5.1 and 5.2. These processes create and in reverse destroy antisite defects. It is worth

mentioning that antisite defects can also be formed via interstitial processes (as will be shown

later, these processes form an essential step in the diffusion of an aluminium interstitial).

Equation 5.1 shows that migration of an Al3+ cation into a neighbouring vacant magnesium

site results in formation of an Al•Mg antisite defect and a V���
Al defect. A contour plot showing the

change in the energy of the system as an Al3+ cation moves in the (11̄0) plane is given in figure

5.12 and a plot of ∆Esys as a function of reaction co-ordinate is given in figure 5.13. These

defects are oppositely charged and form a partially charge compensating defect cluster which

is 0.13 eV lower in energy than the starting V��
Mg defect, so that, as shown in figure 5.13 the

initial and final energies are not equal. The migration energy to form an Al•Mg antisite defect

in this manner is 2.74 eV and for the reverse process, annihilation of the antisite defect, is 2.88

eV. Associated with these large energies is a substantial deviation from the vector between the

initial and final positions of the Al3+ ion (as shown in figure 5.13), as the direct path would

bring the Al3+ cation very close to an oxygen lattice site.

In the case of an Mg2+ ion migrating onto a vacant aluminium site (equation 5.2), a Mg�Al

antisite defect and a V��
Mg defect are created. Figures 5.14 and 5.15 show the contour plot of

the change in system energy in the (11̄0) plane and as a function of the reaction co-ordinate

respectively. Both of these defects are negatively charged and will repel each other resulting

in a relatively high formation energy for the product defect cluster (1.11 eV greater than the

initial V���
Al defect). Figure 5.15 shows that the migration energy for these processes are 2.44

eV for the forward process and 1.33 eV for the reverse process. As the resulting defects are

oppositely charged, the defects will experience a force acting to move them further apart.
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(a) (b)

(c)

Figure 5.10: Illustration of Al3+ transport via a vacancy mechanism on the magnesium sublattice: (a)

The initial swap of the Al3+ cation (Al•Mg) with a magnesium vacancy, (b) migration of the V��
Mg (via

the four step process, labeled i - iv) to a position which allows, (c) the Al•Mg to continue its migration.

The final step shown in (c) is equivalent to the first step (a). Black arrows represent motion of the Al3+

cation whilst the blue arrows represent the movement of the V��
Mg defect.
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Figure 5.11: Plot showing the change in the energy of system, ∆Esys, as a function of the reaction

co-ordinate for an Al3+ cation migrating via a vacancy mechanism on the magnesium sublattice. The

labels correspond to the steps shown in figure 5.10 In step (a) the Al•Mg is followed; in (b i - b iv) the

movement of the V��
Mg is followed.

Figure 5.12: Contour plot showing the change in the system energy as an Al3+ cation migrates off of

its lattice site and onto a neighbouring vacant aluminium lattice site, thus creating an Al•Mg defect, in the

(110) plane.
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Figure 5.13: Plot showing the generation and annihilation of an Al•Mg antisite defect. The forward pro-

cess starts with a Al×Al+V��
Mgdefect cluster; the Al3+ then hops onto the vacant magnesium site forming

the partially charge compensating V���
Al-Al•Mg defect cluster.

Figure 5.14: Contour plot showing the change in the system energy as an Mg2+ cation migrates off of

its lattice site and onto a neighbouring vacant aluminium lattice site, thus creating an Mg�Al defect, in

the (110) plane.
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Figure 5.15: Plot showing the generation and annihilation of an Mg�Al antisite defect. The forward

process starts with a Mg×Mg+V���
Al defect cluster; the Mg2+ then hops onto the vacant magnesium site

forming the like charged V��
Mg and Mg�Al defects.

The activation energies for creation and annihilation of antisite defects via a vacancy mecha-

nism (figures 5.13 & 5.15) are thus demonstrated to be high. Consequently, under equilibrium

conditions the change in concentrations of these defects is very slow, particularly compared

to processes occurring on the magnesium sublattice. This may explain why the antisite defect

concentrations in synthetic spinels are, in general, so much larger than those in natural samples,

that have been allowed to equilibrate over geological timescales [37, 38].

Interstitial migration

Interstitial migration in spinel is a little harder to visualise than vacancy migration, as a con-

sequence of the complex split structure that interstitial species are predicted to exhibit [73, 75,

116]. The starting point for magnesium interstitial migration is therefore the Mg••
i -V��

Mg-Mg••
i

split interstitial structure that is aligned along �110�. From this starting point there are three dis-

tinct activated processes, two of which are capable of facilitating mass transport (as previously

stated in [116]). All three are illustrated in figure 5.16.

The first process involves the reorientation of the split interstitial defect around a vacant tetra-
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(a) (b) (c)

Figure 5.16: Magnesium interstitial migration. There are three ways in which a magnesium cation can

migrate. (a) shows how the split magnesium interstitial can reorient itself, however,this pathway does

not facilitate transport by itself. The pathways shown in (b) and (c) do allow overall matter transport. In

mechanism (b) the initial and final split interstitial defects are aligned along the same plane, however, in

(c) the orientation of the final split interstitial has a different orientation than the initial split interstitial

defect.

hedral site. This occurs when one of the Mg2+ interstitial ions moves from its initial interstitial

site to one of the remaining unoccupied interstitial sites surrounding the same vacant tetrahe-

dral magnesium site (illustrated in 5.16(a)). The second interstitial ion remains unaltered. In

total there are four octahedral interstitial sites surrounding a tetrahedral magnesium site; as

two of these are occupied by the interstitial ions of the initial split interstitial, there are two

remaining interstitial sites into which the interstitial Mg2+ ions can move, hence there are four

symmetrically identical possible pathways (consequently the geometric term, z = 4). As the in-

terstitial defect is still centered about the same vacant magnesium site matter transport cannot

be facilitated by this process.

Both of the magnesium interstitial mechanisms by which matter transport is achieved involve

the concerted motion of a split interstitial defect from one tetrahedral site to one of its near-

est neighbours (shown in 5.16(b) & 5.16(c)). The difference between the two mechanisms

is in the orientation of the final split interstitial with respect to the initial structure. For the

process shown in 5.16(b), the initial and final split interstitial defects are aligned in the same

plane, consequently this process can be considered as one dimensional. Conversely, with the
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process highlighted in 5.16(c) the final split interstitial has become rotated out of the initial

plane. Furthermore, there are two orientations in which the final interstitials can reside. For

both mechanisms subsequent equivalent steps will facilitate transport through the lattice. From

figure 5.16(b) it appears that there is only one possible pathway and thus one would expect the

geometric term to be unity; however, the process can proceed either forward or backward along

the plane of the initial split interstitial and therefore z = 2. Similarly the process illustrated in

5.16(c) can occur forward or backwards with respect to the plane of the initial split interstitial

making the geometric term, z = 4.

The change in the energy of the system as a function of the reaction co-ordinates for each of

these processes is given in figures 5.17, 5.18 and 5.19 for the rearrangement (5.16(a)), inplane

(5.16(b)) and migrate and twist (5.16(b)) Mg••
i interstitial migration processes respectively.

Contour plots have not been given in these cases as the migration processes are no longer

restricted to a single plane, therefore, these plots would be misleading. In these figures it is the

progress of the central Mg2+ ion, along the reaction co-ordinate (as this ion is part of both the

initial and final split interstitials), which is followed on the x-axis.

Figure 5.17: Plot showing the change in the energy of system, ∆Esys, as a function of the reaction

co-ordinate for the Mg••
i rearrangement process, illustrated in figure 5.16(a).

In each case a metastable intermediary defect structure is predicted, where there is an Mg••
i

defect located near the unoccupied octahedral interstice. The activation energy for a Mg••
i

cation to migrate while remaining in the same plane is 0.58 eV (see also [116]) whilst for the

nonlinear, migrate and twist mechanism it is 0.46 eV (see also [116]). For the rearrangement
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Figure 5.18: Plot showing the change in the energy of system, ∆Esys, as a function of the reaction

co-ordinate for the Mg••
i inplane process, illustrated in figure 5.16(b).

Figure 5.19: Plot showing the change in the energy of system, ∆Esys, as a function of the reaction

co-ordinate for the Mg••
i migrate and twist process, illustrated in figure 5.16(c).
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process, the migration energy was 0.54 eV. Consequently the activation energy for Mg2+ matter

transfer via an intersititial mechanism is 0.46 eV. Although this is slightly lower in energy than

the vacancy mediated process (0.54 eV) the energies are sufficiently close that other factors (eg.

Vineyard and geometric terms) could dictate which will be the dominant process in facilitating

Mg2+ transport.

Aluminium interstitial migration is significantly more complex than its magnesium equivalent.

The chosen starting point for Al3+ transport via an interstitial mechanism will be the Al•••i -

V��
Mg-Mg••

i interstitial defect as shown in figure 5.20. It is, however, important to recognise

that this configuration is not the lowest energy point along the transport cycle that results in the

overall transport of Al3+ ions via an interstitial process. This is because the Al•••i -V��
Mg-Mg••

i

defect is of higher energy than an Al•Mg antisite defect adjacent to a Mg••
i -V��

Mg-Mg••
i split mag-

nesium interstitial (as observed in [116]). Consequently, although the Al•••i -V��
Mg-Mg••

i cluster

may be ‘locally’ stable it is not at the zero energy in figure 5.20. Nevertheless, since the Al•••i -

V��
Mg-Mg••

i defect cluster must be involved in the overall interstitial transport mechanism, by

starting with the Al•••i -V��
Mg-Mg••

i split interstitial cluster and ending with an equivalent clus-

ter, mass transport is facilitated. So, the first step involves movement of the Al•••i from the

Al•••i -V��
Mg-Mg••

i cluster towards the V��
Mg site so that the Mg••

i forces a neighbouring magne-

sium ion (Mg×Mg) off its lattice site thereby forming an Al•Mg antisite defect and an adjacent

Mg••
i -V��

Mg-Mg••
i defect (see figures 5.20(a) & 5.20(b)); this process is highlighted in equation

5.3.

Al•••i −V��
Mg−Mg••

i +Mg×Mg→Al•Mg +Mg••
i −V��

Mg−Mg••
i (5.3)

The split magnesium interstitial defect, Mg••
i -V��

Mg-Mg••
i , must then loop around (figures 5.20(c)-

5.20(h)) so it can facilitate the formation of a new Mg••
i −V��

Mg−Al•••i cluster. This final part

of the mechanism is achieved by, first, one of the appropriately orientated Mg••
i ions from the

Mg••
i -V��

Mg-Mg••
i cluster in figure 5.20(f), moving onto the unoccupied octahedral interstitial

site neighbouring the Al•Mg antisite defect. This forces the Al3+ ion off the tetrahedral magne-

sium site onto one of the remaining unoccupied octahedral interstitial sites, thereby creating the

new Mg••
i −V��

Mg−Al•••i cluster (figure 5.20(f)). Then finally the Al3+ ion, in figure 5.20(g),

moves across to be associated with an adjacent octahedral site (figure 5.20(h)). By following

all these steps the Al3+ ion has moved from being associated with a split interstitial across one
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.20: Illustration of Al3+ cation migration via an interstitial mechanism starting with the Al•••i -

V��
Mg-Mg••

i defect cluster. The process begins in (a) with the Al•••i moving onto the vacant magnesium

(V��
Mg) site thus generating an Al•Mg defect adjacent to a Mg••

i -V��
Mg-Mg••

i split interstitial defect. This

Mg••
i -V��

Mg-Mg••
i defect then migrates around a loop as shown in steps (b) - (e) such that it can force the

Al3+ ion off the magnesium site thereby generating the Mg••
i -V��

Mg-Al•••i defect cluster, shown in (f). To

complete the process the Al3+ cation then moves from being associated with the initial tetrahedral site

to an adjacent one as shown in (g) to reach the final state (h) which is equivalent to the starting position,

(a).
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tetrahedral site (figure 5.20(a)) to the next tetrahedral site (figure 5.20(h)) at which point the

whole process can start again.

The change in system energy, ∆Esys, for aluminium interstitial ion migration as a function of

the reaction co-ordinate is shown in figure 5.21. The rate determining step for aluminium

interstitial migration is 1.47 eV. This migration energy for aluminium interstitial migration

is therefore much higher than that for the magnesium vacancy assisted mechanism and, as

such, the lowest migration energy for aluminium transport in spinel remains via a vacancy

mechanism, but on the magnesium sublattice.

Figure 5.21: Plot of change in system energy against reaction co-ordinate for aluminium interstitial

migration. The labels refer to the steps in figure 5.20. Steps (a), (f) and (g) involve the movement of the

Al•••i ion; in all the other steps, it is a Mg2+ cation moving.

5.3.2 Calculation of prefactors

Table 5.1 provides a summary of the migration energies and also the Vineyard terms, geometric

factors, jump distances, correlation factors and their resultant product, D0 (see equation 2.26).

It also reports values for dx via each mechanism at both 500 and 1500 K (this is the temperature

range of interest). The Vineyard terms were calculated using the CLSMAN software package

using a model without shells due to computational efficiency demands.
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Jump distances

In table 5.1 the jump distances for the vacancy mediated processes are simply the distances

between the appropriate lattice sites. For interstitial process these are the distance between

the tetrahedral sites, about which the initial and final defects are located. As rearrangement

processes (figure 5.16(a)) do not lead to net migration, the effective jump distance in these

processes are zero and so do not contribute to diffusion. It may, however, be important for

reorienting the interstitial in the lattice in some circumstances.

Despite the very different types of migration mechanisms considered here, the distances be-

tween the defect start and end point locations (ie. the jump distances) are all very similar.

Therefore, this term, despite being squared in the expression for D0 (equation 2.26), will not

significantly differentiate between processes.

Vineyard terms

The Vineyard terms for the processes considered (shown in table 5.1) are all of similar order,

with the exception of an Al3+ cation migrating via a vacancy mechanism on the aluminium

sublattice. Larger Vineyard terms are expected for processes that have softer modes.

Geometric terms

There is some variation in the geometric terms determined in table 5.1. For example, processes

that involve the migration of an antisite defect have a geometric term that is unity. This is

simply a consequence of this antisite defect being the only ion capable of making this specific

‘hop’. Conversely, the creation of an Mg�Al antisite defect via a vacancy transferring from the

aluminium sublattice has a large geometric term because every tetrahedral magnesium site is

surrounded by 12 nearest aluminium sites. The aluminium vacancy could then migrate into any

of these equivalent sites, thus creating the Mg�Al defect.
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Correlation factors

For simplicity, for all of the processes reported here, it has been assumed that the correlation

factors are unity. Clearly there will be some correlation affects, however, as these values are

all expected to fall in the region 0.4-1.0 [21] this will not lead to a re-ordering of the diffusion

processes.

The values of the dx terms for the various mechanisms at two temperatures are also shown in

table 5.1. The temperatures chosen are 500 and 1500 K as these represent the upper and lower

bounds of our region of interest. At low temperatures (ie. 500 K) the ordering of the dx term is

the same as the ordering of the activation energies, that is the process with the lowest activation

energy has the highest dx term. This is still the case for the optimum transport mechanisms for

each cation at the higher temperature, that is, the migrate and twist (figure 5.16(c)) and the Al3+

via a V��
Mg mechanisms are the dominant transport mechanisms across the whole temperature

range. There is, however, a slight re-ordering in the preference of the remaining mechanisms

by which Al3+ cations may be transported (albeit these mechanisms are far less important for

Al3+ transport). As shown in table 5.1 the Al•••i mechanism has a higher dx (-21.83 ×10−8m2

s−1) than the aluminium vacancy mechanism (-24.07 ×10−8 m2 s−1) at 500 K but at 1500 K

the vacancy mechanism has the greater dx term.

5.4 Summary

Table 5.1 provides a summary of the activation energies and prefactors for the major migration

mechanisms involving the basic intrinsic cation defects. From the analysis of these results the

following conclusions were reached:

• Mg2+ cations are considerably more mobile than Al3+ ions. Our data agrees with the

observations made by Martinelli et al. [129] that Mg2+ is more mobile than Al3+ in

MgAl2O4.

• The difference in the barrier for Mg2+ ion diffusion via vacancy and interstitial mecha-

nisms is small. Furthermore, although there are differences in the geometric and Vine-

yard terms (see Table 5.1) these are not so great that a definitive conclusion can be drawn
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regarding a preferred mechanism, vacancy or interstitial. Indeed, the dominant mecha-

nism may well be determined by the availability of the appropriate mediating defect,

that is, through defect concentrations [75]. This is in contrast to materials such as MgO,

where all interstitial species are significantly more mobile than all vacancy species [137].

• The preferred mechanism for Al3+ ion migration is via a vacancy mechanism on the

magnesium sublattice as opposed to a vacancy mechanism on its own sublattice or an

interstitial mechanism. This result may very well have implications for a number of

other materials in which high concentrations of antisite defects are present.

• Creation and annihilation of antisite defects via cation vacancy mechanisms will be par-

ticularly slow. This may explain the difference in the levels of cation inversion present

in synthetic spinels and those which have annealed over geological timescales.

• Though important to determine, differences between the terms contributing to prefac-

tors (ie. the Vineyard terms, geometric terms and jump distances) are not sufficient, in

the case of MgAl2O4, to change the preferred mechanisms by which cation transport is

facilitated over that dictated by the migration energies alone.
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6
Oxygen self-diffusion in spinel

6.1 Introduction

In the previous chapter the diffusion processes responsible for cation transport were investi-

gated, however, anion diffusion was neglected. This chapter aims to rectify this by examining

the principle mechanisms responsible for oxygen diffusion by determining the migration en-

ergy and the other, temperature independent, terms in a similar fashion to the approach applied

to cation diffusion. The methodology is identical to that employed in chapter 5.

The oxygen ions, in spinel, form a pseudo FCC lattice (an in depth description of the cation

sublattices can be found in 2.3.2). However, the FCC approximation is a simplification, in that,

the O2− anions relax away from the idealised FCC sites, in the �111� direction, by an amount

defined by the u parameter [33]. For a perfect FCC arrangment the u parameter is zero. In a

‘normal’ spinel O2− anions relax away from the nominally divalently charged tetrahedral sites

and are attracted towards the octahedral sites (and the u parameter is increased). Upon cation

exchange the electrostatic repulsion between the Mg�Al and the surrounding O2− ions forces the

anions to shift back towards the ideal FCC sites. Conversely, the O2− anions surrounding an

Al•Mg defect are drawn closer to the tetrahedral site, again moving closer to the ideal FCC site.

Clearly the level of inversion present in spinel will have significant impact on the overall struc-

ture of the oxygen sublattice and consequently its ability to facilitate oxygen self-diffusion. The

results presented in this chapter ignore the impact of inversion on oxygen transport, although

this is examined in more detail later.
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Owing to the availability of a convenient radioactive tracer isotope of oxygen (18O) there have

been several experimental investigations into the self diffusion of oxygen in spinel. Ando and

Oishi [138] conducted radioactive tracer experiments and determined an activation energy of

105 kcal mol−1 (4.55 eV) for oxygen self diffusion in single crystal spinel. Furthermore, they

observed only a very slight increase in this activation energy, 106 kcal mol−1 (4.59 eV), for

oxygen transport in a single crystal with Al2O3 excess, thus implying that the concentration

of the mediating oxygen defects are unaffected by Al3+ incorporation. In a later study Oishi

and Ando [139] performed a similar study, however, this time on a polycrystalline sample as

opposed to a single crystal. This new study yielded an activation energy of 91.9 kcal mol−1

(3.99 eV), and demonstrated the importance of processes such as grain boundary diffusion

when considering self diffusion in spinel. By conducting depth profiling experiments on a

spinel single crystal, Reddy and Cooper [140] obtained a value of 415 kJ mol−1 (4.30 eV),

whilst Ryerson and McKeegan [141] obtained a value of 404 kJ mol−1 (4.19 eV) using a gas-

solid isotope exchange technique. In addition to the activation energy Ryerson and McKeegan

[141] reported a value for the pre-exponential term, D0, of 2.2 ×10−7 m2s−1 (+8.7/-1.8 ×10−8

m2s−1). Clearly there is good agreement between the experimental data, however, the degree

of inversion present in the crystals used is not reported in any of these studies making a full

comparison difficult. Furthermore, whilst these studies all agree on the activation energy there

is little discussion of the mechanisms responsible for oxygen self diffusion.

Uberuaga et al. [116] used the atomistic simulation technique TAD [99] to determine the migra-

tion energies for the intrinsic defect processes capable of facilitating oxygen transport. Their

work showed that, the migration energy for oxygen interstitial migration (0.29 eV) is lower

than for vacancy mediated migration (1.67 eV). The ab initio simulations of Lodziana and

Piechota [142] found a migration energy of 4.3 eV for migration of the charge neutral V×
O de-

fect. These values are not directly comparable with the experimental observations made above

as this only represents the migration energy and does not include the energy to form the de-

fect, however, they are useful in terms of predicting the mechanism responsible for oxygen

self-diffusion in spinel.
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6.2 Results and discussion

6.2.1 Vacancy migration

Each oxygen (48 f ) site in spinel is surrounded by 12 nearest neighbour oxygen sites, therefore,

should an oxygen ion be removed to create an oxygen vacancy, V••
O , it is possible for any of

these 12 O2− anions to ‘hop’ onto the vacant site. As a result, however, of the displacement

described by the u parameter these 12 anions do not all reside at equivalent distances from the

now vacant site. The model predicted that six cations reside at a separation of 2.80 Å from the

vacant site, a further three at a separation of 2.38 Å and the remainder at 3.12 Å. Figure 6.1

presents a cross section through a spinel unit cell in the (100) plane and shows an example of

the three different vacancy mechanisms possible as a result of the oxygen positional parameter

displacement. The change in the energy of the system, ∆Esys, as a function of the reaction co-

ordinate for the vacancy mechanisms are shown in figures 6.2-6.4 and the activation energies

are presented in table 6.1.

Figure 6.2 shows the migration energy for an O2− anion to ‘hop’ into the vacant site, following

process (1) shown in figure 6.1. The activation energy for this process is predicted to be 1.40

eV, compared to a value of 1.67 eV determined by Uberuaga et al. [116] using a nudged elastic

band (NEB) technique on a model that does not include the effects of polarisation. By making

repeated identical jumps this mechanism is capable of facilitating oxygen transport throughout

the lattice.

Neither of the processes (2) and (3) shown in figure 6.1 are capable of supporting overall

transport of the oxygen on their own, however, transport is possible via a combination of the

two. The migration energies as a function of the reaction coordinates for processes (2) and (3)

are shown in figures 6.3 and 6.4 respectively. A migration energy of 1.55 eV (compared to

1.49 eV [116]) for process (2) and a migration energy of 3.27 eV (compared to 3.65 eV [116])

was obtained for process (3). Consequently the overall migration energy for an oxygen ion

migrating via a vacancy mechanism is predicted to be 1.40 eV.
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Figure 6.1: Cross-section through a single spinel unit cell in the [100] plane. Here the red spheres

represent O2− anions and the green spheres represent the Al3+ cations. Due to relaxation of the cations

away from the tetrahedral sites and the contraction about the octahedral lattice sites the oxygen-oxygen

ion separations are no longer equidistant. There are, in fact, three distinct groups of nearest neighbour

oxygen sites to any given vacant oxygen site. The blue arrows therefore represent examples of each of

three different V ��
O migration mechanisms possible in spinel, labeled (1),(2) and (3). The distance the

oxygen anion has to cover are 2.8 Å, 2.38 Åand 3.12 Åfor processes (1), (2) and (3) respectively.
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Figure 6.2: Change in the energy of the system, ∆Esys, as a function of the reaction co-ordinate for the

oxygen vacancy migration process (1) shown in figure 6.1.

Figure 6.3: Change in the energy of the system, ∆Esys, as a function of the reaction co-ordinate for the

oxygen vacancy migration process (2) shown in figure 6.1.
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Figure 6.4: Change in the energy of the system, ∆Esys, as a function of the reaction co-ordinate for the

oxygen vacancy migration process (3) shown in figure 6.1.

6.2.2 Interstitial migration

Previous work [73, 75] has shown that the most energetically stable configuration for an O��
i

interstitial defect is to form a complex O��
i -V••

0 -O��
i defect aligned along one of the �11̄0� direc-

tions. For interstitial migration to occur, one of the oxygen interstitials from the O��
i -V••

0 -O��
i

defect must move onto the V••
O site thereby forcing the other O��

i defect to require a neighbour-

ing O×
O off its site creating another O��

i -V••
0 -O��

i defect shifted along �11̄0�; this is shown in

figure 6.5. By repeating the process this mechanism can facilitate O2− transport, however, the

mechanism is only one dimensional (1D). The migration energy as a function of the reaction

co-ordinate (the reaction co-ordinate here represents the motion of the central O��
i interstitial as

this is present in both the initial and the final O��
i -V••

0 -O��
i defects) is shown in the plot given in

figure 6.6. A migration energy of 0.16 eV (0.29 eV was predicted by Uberuaga et al. [116]) was

predicted using this simulation technique. The jump distance given in table 6.1 is the distance

between the sites about which the initial and final O��
i -V••

0 -O��
i defects are centred.

Uberuaga et al. [116] also highlight two separate oxygen interstitial rotation processes which

allow the O��
i -V••

0 -O��
i defects to access the other �11̄0� directions in order to facilitate 3D trans-

port. The migration energies for these were predicted to be 0.64 and 0.67 eV. Unfortunately, it

109



CHAPTER 6. Oxygen self-diffusion in spinel

Figure 6.5: Oxygen interstitial migration. The red spheres represent oxygen ions, green ions represent

aluminiuim ions, the magnesium ions are represented by the yellow spheres and the red cube repre-

sents the initial site, about which, the interstitial is split. For migration to occur the left interstitial ion

must collapse onto the vacant site, thereby forcing the other interstitial ion to become associated with

the neighbouring oxygen site and forcing the lattice ion from it’s site creating the blue coloured split

interstitial.
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Figure 6.6: Migration energy as a function of the reaction co-ordinate for oxygen interstitial migration.

It is the motion of the central interstitial ion which is followed on the x-axis, as it is part of both the

initial and final O��
i -V••

0 -O��
i defects.

was not possible to determine equivalent values using the static based technique applied in this

chapter. The reason for this is that in region of the saddle point the force on the oxygen anions

cause the core and the shell to decouple. It may be possible to modify the spring constant

or add a further term to the harmonic coupling between the core and the shell, however, this

involves modifying the forces between ions and would be inconsistent with the other energies

calculated here. Uberuaga et al. [116] predicted the migration energies for these processes to

be roughly 0.35 eV greater in energy than the 1D diffusion process, therefore it is expected that

these rotation mechanisms will not represent the principle mechanisms for oxygen interstitial

diffusion in spinel.

Also included in table 6.1 are the temperature independent terms, ie. the geometric term, jump

distance and the Vineyard term. Using these values the prefactor, Dx
0, for each process was

determined and also included in table 6.1. In order to allow a full comparison of the diffusion

mechanisms suggested here the diffusivities (excluding the concentration term) at 500 K and

1500 K (these temperatures were chosen as they represent the upper and lower bounds of the

region of interest) are reported in table 6.1.
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Table 6.1 shows that the attempt frequencies for each of the processes is within an order of

magnitude, with vacancy mechanism (3) having the softest modes and consequently the largest

Vineyard term. The jump distances, all fall within 2.38 - 3.12 Å and therefore despite being

squared in D0 do not differentiate between the processes. Consequently, there is less than

an order of magnitude difference in the overall diffusion prefactors. For the most favourable

vacancy mechanism (mechanism 6.1(1)) the pre-exponential factor, D0, is 85.85 ×10−8 s−1

m2 and for the interstitial mechanism D0 was found to be 22.40 ×10−8 m2 s−1 . The D0 value

predicted for the interstitial mechanism agrees exceptionally well with the experimental value

of 2.2×10−7 m2s−1 (+8.7/-1.8×10−7 m2s−1) obtained by Ryerson and McKeegan [141] which

suggests that the interstitial mechanism is responsible for the diffusion they observed (although

correlation has not been included it is expected to be close to unity).

At both 500 and 1500 K the ordering of the diffusion processes is dictated by the migration

energies for each process. Across the entire temperature range of interest it is the oxygen

interstitial diffusion mechanism that has the largest value of dx, therefore the most favourable

mechanism for oxygen self diffusion is via O��
i defects (presuming the concentrations of O��

i and

V••
O defects are the same).

6.3 Summary

The results obtained in this chapter lead to the following conclusions:

• A comparison of the dx values at both 500 and 1500 K (ie. across the entire temperature

range of interest) for all of the point defects in spinel predicts that the O��
i defect is the

most mobile point defect in spinel.

• As was the case for cation diffusion the calculation of the diffusion prefactors is im-

portant, however, it is not sufficient to cause a reordering of the interstitial and vacancy

mediated oxygen self diffusion mechanisms examined here.
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7
Defect clustering and diffusion in spinel

7.1 Introduction

The preceding chapters, (5 and 6) examined the role of point defects in facilitating the trans-

port of both cations and oxygen ions in spinel. The simple mechanisms proposed for cation

(chapter 5) and oxygen transport (chapter 6) are predominantly facilitated by isolated point

defects, with some mechanisms, most noticeably Al3+ migrating via a vacancy mechanism on

the magnesium sublattice, requiring the presence of more than one defect. However, in many

ceramic materials, it is unlikely that defects will find themselves completely isolated, therefore,

the processes discussed previously will be perturbed by the presence of other defect species.

In much the same way as oppositely charged molecules are attracted to each other, point defects

with opposite charges will be attracted to each other. There is, therefore, a driving force (ie.

minimising the Coulombic interaction) for these defects to form clusters by minimising the

separation between them. In order for these clustered point defects to move apart, and break

the cluster, they need to overcome the binding energy that holds them together. As the point

defects that facilitate diffusion in spinel are all charged these defects will become bound to

each other, which in turn, may affect their ability to promote mass transport.

A further, more subtle, way in which the presence of a point defect, unrelated to the isolated

diffusion process, can affect the migration mechanisms discussed in chapters 5 and 6 is related

to a defect’s effect on the local environment. When a defect is introduced into a crystal, the

lattice relaxes to accommodate it. Consequently, the region immediately surrounding a point
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defect has been modified, to some extent, from the the perfect lattice; this perturbed region is

known as a defect’s strain field. Clearly, any point defect migrating through the strain field

of another point defect will encounter an environment that is subtly different from the perfect

lattice. Since the region the defect is migrating through is altered, the energies of the processes

facilitating transport are also modified.

In this chapter the accelerated dynamics technique, TAD [99], is used to investigate how point

defect mediated cation and oxygen transport in spinel is affected by defect-defect interactions.

TAD has been used previously to examine the behaviour of isolated defects in spinel [116]

and more complex cluster diffusion processes in MgO [137]. Uberuaga et al. [143] showed,

using TAD, that in MgO vacancies are immobile but interstitial clusters, containing 3O��
i and

3Mg••
i defects, diffuse on the nanosecond timescale. The complex pathway by which this

defect cluster can diffuse would have been practically impossible to predict from observations

of the crystal structure, thus demonstrating the power of a technique that requires no a priori

knowledge of the diffusion processes.

7.2 Methodology

An overview of the TAD simulation technique can be found in section 3.7. The simulations

conducted here employ a 2x2x2 supercell, containing 448 ions, which is tessellated infinitely

through space to represent the spinel lattice. Again the potential parameters of Smith et al. [73]

were used, however, in order to ensure that the model was computationally tractable, a shell

model was not employed. Thigh and Tlow were selected to ensure that the processes observed

were relevant whilst achieving a reasonable boost factor when compared to ordinary MD. The

defect starting locations within the cell were selected at random.
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7.3 Results and discussion

7.3.1 Isolated defects

In order to allow a direct comparison of the point defect migration process in the isolated

and clustered cases, TAD simulations were first conducted on the isolated point defects. For

these simulations, Thigh was set to 3000 K and Tlow was set at 1500 K. The results of the TAD

simulations of spinel supercells containing the intrinsic point defects are presented in trace form

in figure 7.1 (a trace is a superposition of the defect’s locations after every TAD transition) and

the overall migration energies for mass transport facilitated by each isolated point defect is

presented in table 7.1.

Figure 7.1(a) shows that during the course of the simulation the V��
Mg defect diffuses in 3D

and as such is able to explore the entire supercell. It migrates via a metastable V��
Mg-Mg••

i -

V��
Mg defect cluster (as predicted in chapter 5), hence interstitial ions are indicated in 7.1(a).

The migration energy for the V��
Mg defect to enter the metastable, V��

Mg-Mg••
i -V��

Mg, state was

predicted to be 0.68 eV and the barrier for it to leave the metastable state was 0.09 eV. Chapter

5 predicted migration energies of 0.56 eV and 0.21 eV for the two equivalent process. The

origin of this discrepancy is likely the inclusion of a shell model in the static calculations

presented in chapter 5.

Magnesium interstitial diffusion (figure 7.1(b)) is a combination of the mechanisms highlighted

in figure 5.16, with migration energies of 0.56 eV, 0.74 eV and 0.52 eV for processes 5.16(c),

5.16(b) and 5.16(a) respectively. Using the static method applied in chapter 5 the migrate and

twist Mg••
i diffusion mechanism (figure 5.16(c)) was also predicted to have the lowest migra-

tion energy with a value of 0.46 eV and the inplane mechanism (figure 5.16(b)) the highest

migration energy of 0.58 eV. Chapter 5 predicted a migration energy of 0.54 eV for the re-

arrangement process. Furthermore, the model that includes the polarisability of the oxygen

ions (applied in chapter 5) suggests that all of the Mg••
i migration processes will migrate via

a metastable intermediary. The migration energies to escape from the metastable intermediate

states are negligible for the migrate and twist (figure 5.16(c)) and inplane (figure 5.16(b)) mech-

anisms but more significant (0.44 eV) for the Mg••
i rearrangement process (figure 5.16(a)). In

contrast, the TAD simulations predict that Mg••
i migration via the migrate and twist mechanism
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is the only processes to enter an intermediate state and the migration barrier for escape is 0.07

eV.

Aluminium diffusion via a vacancy mechanism on its native sublattice is shown in figure 7.1(c).

As in the V��
Mg case the process has an metastable intermediary, V���

Al-Al•••i -V���
Al state. The

activation energies to enter and then leave the intermediate state are 1.98 eV and 0.32 eV

respectively. By comparison the model applied in chapter 5 predicted values of 1.83 eV and

0.12 eV for the same processes.

For interstitial diffusion it was predicted in chapter 5 that the Al•••i -V��
Mg-Mg••

i interstitial defect

was unstable and would decay to the [Al•Mg:Mg••
i -V��

Mg-Mg••
i ]••• defect cluster. Both the Al•Mg

and Mg••
i -V��

Mg-Mg••
i defects are positively charged therefore they will repel each other and

because it is the more mobile defect, the Mg••
i interstitial diffuses away, as shown in figure

7.1(d). The activation energy for the decay process is 0.85 eV compared with 0.54 eV predicted

in chapter 5.

Oxygen vacancy and interstitial migration during the simulations are shown in figures 7.1(e)

and 7.1(f) respectively. During the V••
O simulation only two of the three processes described

in figure 6.1 were observed and the activation energies for processes 6.1(a) and 6.1(b) are 1.53

eV and 1.68 eV (values of 1.40 eV and 1.55 eV were predicted in chapter 6). The final oxygen

vacancy migration process discussed in chapter 6 was not observed in the TAD simulations,

this is due to the significantly higher energy barrier for this transition (a value of 3.27 eV was

predicted in chapter 6).

The simulation showing O��
i diffusion (figure 7.1(f)) predicts that oxygen interstitial diffusion

will occur in one dimension; with a migration energy of 0.30 eV. For the equivalent process

a value of 0.16 eV was predicted using a static based technique in chapter 6. In order for

the mechanism to become 3D the O��
i defect must undergo a rotation process that will allow

it to access other �110� directions. Two rotation mechanisms were suggested by Uberuaga et

al. [116] both of which were detected during the TAD simulation presented in figure 7.1(f)

and migration energies of 0.68 eV and 0.69 eV were determined, however, neither of these

processes were accepted in the simulation.

Table 7.1 gives the simulation times for each of the simulations presented in figure 7.1. The

longest simulated time was for the supercell containing a V���
Al defect (0.60 ×103 ns) and the
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(a) Magnesium Vacancy (b) Magnesium interstitial

(c) Aluminium Vacancy (d) Aluminium Interstitial

(e) Oxygen Vacancy (f) Oxygen Interstitial

Figure 7.1: Traces of the time dependant evolution of the isolated point defects, at 1500 K. The pale blue

spheres represent V��
Mg, blue spheres represent Mg••

i , pale green spheres represent V���
Al, green spheres

represent Al•••i , pale pink spheres represent V••
O , pink spheres represent O��

i and a dark green sphere

represent Al•Mg defects. The colours denoting each defect species in this figure are used in all traces

presented in this chapter.
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Table 7.1: Table containing a summary of the simulation times (ie. the duration of the simulated period)

at 1500 K and the migration energies of the isolated intrinsic defects predicted using TAD. The Al•••i

defect collapses to form Al•Mg and Mg••
i defects, after which, there is no further migration of the Al3+

cation.

Defect Simulation Migration

Time /ns Energy /eV

V��
Mg 9.50 0.68

Mg••
i 0.37 0.53

V���
Al 0.60 ×103 1.98

Al•••i 3.52 unstable

V••
O 6.56 1.53

O��
i 0.88 ×10−3 0.30

shortest was for the supercell containing an O��
i defect (0.88× 10−3 ns). However, these two

simulations were run for significantly different periods of time so it is useful to consider the

simulation time per hour CPU time. For the V���
Al simulation a simulation rate of 3.2 ns per

hour CPU time compared with 17.6 fs per hour CPU time for the O��
i simulation. The reason

for the difference in the simulation rates is related to the migration energies for the processes

occurring within the supercell. For a system with a low migration energy (as is the case in

the O��
i simulation) it is more probable, than for a system with predominantly high migration

energies (eg. V���
Al), that the system will have undergone a transition to a new state each time

the basin-constrained MD is paused. Should a transition have occurred since the last time

the basin-constrained MD simulation was paused then an NEB calculation must be performed

to determine the activation energy for the transition. Consequently, in a system with lower

migration barriers, more transitions will occur, requiring the simulation to spend more time

performing NEB simulations as opposed to continuing the high temperature MD simulation.

7.3.2 Defect clustering

As the concentration of cation antisite defects are predicted to be orders of magnitude greater

than the other point defects [75] it is probable that a vacancy or interstitial defect migrating

through the lattice will become bound to an oppositely charged antisite defect. The simulations
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in chapter 5 predicted that antisite defects will diffuse more slowly than interstitial and vacancy

defects, therefore, it is instructive to consider how the presence of an antisite defect will affect

diffusion of the other intrinsic point defects.

Influence of an Al•Mg defect on migration of a V��
Mg defect

Figure 7.2 shows the evolution of a spinel supercell containing an Al•Mg defect and a V��
Mg

defect. This figure shows that the Al•Mg defect is not observed to diffuse on the time scale of the

simulation (17.50 ns). The results in chapter 5 predicted that the preferred mechanism for Al3+

cation diffusion is via a vacancy mechanism on the magnesium sublattice. However, the TAD

simulation failed to predict a single migration of a magnesium vacancy to an Al•Mg defect, an

essential part of the process proposed in chapter 5; although the transition was detected during

the course of the simulation (a migration energy of 1.18 eV was predicted here compared with

0.88 eV predicted in chapter 5). For the Al•Mg defect to migrate onto a neighbouring magnesium

site the V��
Mg defect must be located on one of the four nearest neighbour sites. Figure 7.3 shows

how the spacial separation between the V��
Mg defect and the Al•Mg evolves during the course of

the simulation. Initially the V��
Mg defect is located on a nearest neighbour site to the Al•Mg defect

(the defects are separated by 3.51 Å). The V��
Mg defect migrates via an intermediary V��

Mg-Mg••
i -

V��
Mg (as discussed in chapter 5 and in section 7.3.1), therefore, as these processes occur, the

separation between the Al•Mg defect and this metastable intermediate is computed from the

central Mg••
i defect. During the simulation the largest separation observed between the defects

was 14.06 Å. This separation is sufficient for the V��
Mg defect to interact significantly with the

Al•Mg defect image in a neighbouring supercell. Therefore, given a high enough concentration

of Al•Mg defects (in the simulation shown in figure 7.2, ∼1.5 % of the Mg×Mg lattice ions were

replaced with Al•Mg defects), the V��
Mg defect can move from antisite to antisite and so may

diffuse without ever becoming completely dissociated from the Al•Mg defects (subject to the

distribution of Al•Mg defects).

Figure 7.3 indicates a significant fluctuation in the separation between the two defects during

the simulation, despite them being bound together. In a traditional MD simulation a plot of the

separation between two defects in a crystal would be a smooth continuous function, however,

the plot shown in 7.3 is not a continuous smooth curve because the defect positions are only

reported once a transition has occurred. Therefore, in figure 7.3 the defects appear to jump
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Figure 7.2: Trace of the long timescale evolution of a spinel supercell containing an Al•Mg and a V��
Mg

defect.
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Figure 7.3: Plot of the defect separation as a function of the simulation time for a spinel supercell

containing an Al•Mg and a V��
Mg defect.

from one relaxed state to the next relaxed state. As the separation between defects are only

reported once a transition has occurred; the residency time, at a given defect separation, is the

time between transitions (represented by horizontal sections of the plot shown in figure 7.3).

The probability, G(r), of the Al•Mg and V��
Mg defects residing at one of the set of separations, r,

is calculated as the total simulation time spent at r as a fraction of the total simulation time.

G(r) is then plotted as a function of the separation between the defects in figure 7.4. Figure

7.4 predicts that residence at the second nearest neighbour configuration is roughly five times

more probable than the nearest neighbour configuration. Furthermore, within this cell (ie. at

this concentration and subject to these geometric constraints) the Al•Mg defect can only migrate

during the 10% of the time, during which the defects are in a nearest neighbour configura-

tion. The second nearest neighbour configuration is 0.005 eV higher in energy than the nearest

neighbour configuration, however, there are 12 second nearest neighbour sites and four adja-

cent sites. So by examining the thermodynamics of the system, it would be expected that the

ratio between the probabilities, G(r), of the first and second nearest neighbour configurations

would be close to 1:3 at low temperatures. During the simulation the defects sample a nearest

neighbour configuration 68 times compared with the 231 times for the second nearest neigh-
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bour configuration. This represents a ratio of roughly 1:3.4, therefore, the average time spent

at a second nearest neighbour configuration must be greater than the average residency time for

a first nearest neighbour configuration (the simulations predicts 23.2 and 12.5 ps respectively).

The lifetime of each state is related to the migration energies for migration out of that state

(ie. a state that corresponds to a shallow minimum on the potential energy surface will have

a shorter lifetime than a state corresponding to a deep well). Figure 7.5 shows the potential

energy surface in the region immediately surrounding the Al•Mg defect.

Figure 7.4: Plot of the probability distribution, G(r), as a function of the separation between an Al•Mg

and a V��
Mg defect.

From figure 7.5 it is possible to see that the migration energies for the escape from the two

nearest neighbour sites. When the defects are in a nearest neighbour configuration the barrier

for the Al•Mg defect to migrate is 1.18 eV and to move to one of the of the three second nearest

neighbour sites is 0.66 eV. The migration energies to escape from the second nearest neighbour

configuration are 0.60 eV to migrate to the intermediate state linking the first and second nearest

neighbours, 0.87 eV to migrate to a neighbouring third nearest neighbour site and 0.72 eV

to migrate to one of the two available fourth nearest neighbour sites. By determining the

jump distances and attempt frequencies for each of the processes described above it is possible

to determine (using equation 2.28) the overall rate of escape, dx, from the first and second

nearest neighbour configurations. The Log of the dx values, at 1500 K, for escape from the

first nearest neighbour configuration is -12.97 compared to a value -12.55 for escape from

the second nearest neighbour sites, this implies that the nearest neighbour site would have a

greater residency time. This is contrary to the lifetimes observed in the simulation, therefore,
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Figure 7.5: The potential energy surface near to the Al•Mg defect. All energies are presented relative to

the energy of the nearest neighbour configuration.

there must be another factor influencing the lifetime of the first and second nearest neighbour

configurations.

The final factor which has not been discussed so far in this section, but is included in a TAD

simulation, is entropy. Migrational entropy is included in the determination of the rate con-

stants to escape from the two configurations above via the Vineyard equation (equation 2.22),

however, configurational entropy was not considered. Determining the configurational entropy

is not trivial, however, to give an indication as to whether entropy is likely to be a major factor

an identical TAD simulation was conducted at 500 K (as G = H−T S, reducing the tempera-

ture should reduce any entropic effects thereby bringing the ratio of probabilities for the nearest

and second nearest neighbours closer to the 1:3 ratio predicted by the enthalpies alone). During

this simulation the ratio of probabilities for the nearest and second nearest neighbour sites is

reduced to 1:3.20 and the average lifetime of the second nearest neighbour configuration is also

reduced to less than that of the nearest neighbour configuration (0.30 and 0.42 ms respectively).

Therefore, in future work it is important to consider the relative free energy of the states rather

than simply comparing the relative enthalpies if detailed differences are to be discussed.

Figure 7.6 shows the migration energy of a V��
Mg defect plotted as a function of the separation
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from an Al•Mg defect. Included in 7.6 are the migration energies for the isolated V��
Mg defect.

A comparison of the migration energy of the isolated V��
Mg defect with the various migration

energies for the V��
Mg defect migrating within the strain field of the Al•Mg defect, shows that

there is a distribution of energies as opposed to the single values of the isolated case.

Figure 7.6: Plot of the migration energies as a function of the separation between a V��
Mg defect and

an Al•Mg defect. The horizontal lines represent the activation energies for the isolated V��
Mg diffusion

processes, the red line represents the migration energy to reach the intermediate state and the blue line

is the migration energy to escape from the intermediate state.

Influence of an Al•Mg defect on migration of a V���
Al defect

Figure 7.7 shows the long timescale evolution of a spinel supercell containing a V���
Al defect

and an Al•Mg defect during a simulation lasting 1.23 ms. The separation between the Al•Mg

defect and the V���
Al defect is then plotted as a function of the simulation time in figure 7.8 and a

probability distribution, G(r), of the defect separations is given in figure 7.9. Figure 7.7 shows

that during the course of the simulation the V���
Al defect is able to migrate only as far as a second

nearest neighbour site (5.27 Å) from the Al•Mg defect.

The two peaks in figure 7.9 correspond to the nearest and second nearest neighbour {Al•Mg:V���
Al}��

cluster configurations. Whilst there are three different V���
Al-Al•••i -V���

Al intermediates observed

during the simulation they have a very short lifetime and so are not visible in figure 7.9. Figure

7.9 shows that the V���
Al defect spends most of its time (93%) on an adjacent site to the Al•Mg

defect. The nearest neighbour configuration is 0.29 eV lower in energy than the second nearest
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Figure 7.7: Trace of the long timescale evolution of a spinel supercell containing an Al•Mg and a V���
Al

defect.
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Figure 7.8: Plot of the defect separation as a function of the time for a spinel supercell containing an

Al•Mg and a V���
Al defect.

neighbour site, therefore, despite the larger number of second nearest neighbour sites the first

nearest neighbour configuration is dominant.

Figure 7.10 shows how the migration energies are modified as the separation between the Al•Mg

and V���
Al defects is increased. Again this indicates that the small changes in the local envi-

ronment resulting from the presence of an antisite defect can affect the migration energies of

the more mobile vacancy and interstitial defects. In the most extreme case observed in this

simulation the migration energy to escape from the metastable intermediate state is increased

from 0.32 eV up to 0.55 eV. This may have a dramatic impact on the overall diffusion pro-

cesses given competing processes with similar migration energies. This would undoubtedly be

a fruitful area for further work.

Influence of an Al•Mg defect on migration of an O��
i defect

The interaction between an Al•Mg defect and an O��
i defect over a period of 0.43 ns is shown

in figure 7.11. Initially the O��
i defect is 6.08 Å from the Al•Mg defect, however, the O��

i defect
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Figure 7.9: Plot of the probability distribution, G(r), as a function of the separation between the Al•Mg

and a V���
Al defect.

Figure 7.10: Plot of the migration energies as a function of the separation between the V���
Al defect and

the Al•Mg defect. The horizontal lines represent the activation energies for the isolated V���
Al diffusion

processes, the red line represents the migration energy to reach the intermediate state and the blue line

is the migration energy to escape from the intermediate state.
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quickly migrates towards the antisite defect until it occupies a nearest neighbour configuration

(where the separation is 1.78 Å). Once this nearest neighbour configuration is established the

interstitial defect undergoes a rotation mechanism to enter the lowest energy configuration.

The migration energy to perform the rotation process was 0.73 eV, however, the energy gained

due to the rotation is 1.38 eV. Due to the high migration energies for escape from this lowest

energy configuration (∼ 1.5 eV) to a second nearest neighbour configuration and the very small

migration energy to move between equivalent nearest neighbour sites (0.12 eV) the separation

between the defects is unchanged throughout the remainder of the simulation, as shown in

figure 7.12.

Figure 7.11: Trace of the long timescale evolution of a spinel supercell containing an Al•Mg and an O��
i

defect.

A plot of the migration energies for O��
i defect diffusion as a function of its separation from the

Al•Mg defect is given in figure 7.13. The migration barrier to move between nearest neighbour

sites is significantly lower than the isolated O��
i migration energies. This significant change in

the migration energy arises due to the distortion in the oxygen sublattice in the region immedi-

ately surrounding the antisite defect.
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Figure 7.12: Plot of the defect separation as a function of the simulation time for a spinel supercell

containing an Al•Mg and a V���
Al defect.

Figure 7.13: Plot of the migration energies as a function of the separation between an O��
i defect and

an Al•Mg defect. The horizontal lines represent the migration energies for the isolated O��
i diffusion

processes, the green line represents the 1D diffusion process and the blue and red lines represent the

migration energies for the rotation processes.
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Influence of an Mg�Al defect on migration of an Mg••
i defect

A trace of a spinel supercell containing an Mg�Al defect and a Mg••
i defect evolving for a period

of 1.63 ns is shown in figure 7.14. Figure 7.15 shows how the separation between the two

defects changes as a function of time during the simulation. From figure 7.15 it is possible to

see that the Mg••
i defect can migrate to a separation from the Mg�Al defect in excess of 9.0 Å;

this separation is sufficient to enable the Mg••
i defect to become associated with an Mg�Al defect

image in a neighbouring cell.

Figure 7.14: Long timescale evolution of a spinel supercell containing a Mg�Al and Mg••
i defect. The

darker blue sphere at the centre of the supercell represents a Mg�Al defect.

The lowest energy configuration for the {Mg�Al:Mg••
i }• cluster is for the Mg••

i -V��
Mg-Mg••

i de-

fect to be located on one of the six nearest neighbour magnesium lattice sites relative to the

Mg�Al defect and the second lowest energy configuration sees the Mg••
i -V��

Mg-Mg••
i cluster cen-

tred on one of the 12 second nearest neighbour sites. The intermediate states represent isolated

Mg••
i defects. During the simulation the nearest neighbour site is visited on more occasions

than the second nearest neighbour configuration, however, the average lifetime of the second

nearest neighbour configuration is longer, resulting in the plot shown in figure 7.16.
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Figure 7.15: Plot showing the defect separation as a function of the simulation time for a spinel supercell

containing an Mg�Al and a Mg••
i defect.

Figure 7.16: Plot of the probability distribution, G(r), as a function of the separation between an Mg�Al

and a Mg••
i defect.
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A plot showing the migration energies observed during the simulation as a function of the

separation between the defects prior to the relevant transition is given in figure 7.17. The

presence of the Mg�Al defect causes distortion in the environment immediately surrounding the

antisite defect, therefore, there is a distribution in the migration energies compared with the

isolated Mg••
i defect.

Figure 7.17: Plot showing the migration energy as a function of the separation between a Mg••
i defect

and a Mg�Al defect. The horizontal lines represent the migration energies for the isolated Mg••
i diffusion

processes, the red line represents the inplane (figure 5.16(b)), the black line is the migrate and twist

mechanism (figure 5.16(c)), the blue line represents the rearrangement process (figure 5.16(a)) and the

green line represents the activation energy to escape from the intermediate stage entered during the

migrate and twist mechanism.

Influence of an Mg�Al defect on migration of an Al•••i defect

The presence of an Mg�Al defect does not act to stabilise the Al•••i -V��
Mg-Mg••

i defect. That is,

the cluster is predicted to decay within 22.76 ps to form an Al•Mg defect and an Mg••
i -V��

Mg-

Mg••
i defect. Once the Al•••i defect has decayed, the Mg••

i -V��
Mg-Mg••

i diffuses away from the

Al•Mg defect, however, it is then attracted to the Mg�Al defect. Figure 7.18 shows a trace of the

evolution of a spinel supercell containing an Al•••i defect and an Mg�Al defect for 0.35 ns.

The variation in the separation between the Mg�Al defect and Mg••
i defect, resulting from the

collapse of the Al•••i defect, is plotted as a function of simulation time in figure 7.19. Once

the Al•••i defect has decayed the cell contains the stationary (at least on the timescale of this
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Figure 7.18: Trace of a long timescale evolution of a spinel supercell containing a Mg�Al and an Al•••i

defect.
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simulation) Mg�Al and Al•Mg defects in a nearest neighbour configuration and a Mg••
i defect.

Initially, the Mg••
i defect is repelled by the Al•Mg defect and so moves around to become bound

with the Mg�Al. The interaction between the Mg••
i and Mg�Al defects is very similar to that

observed in the {Mg�Al:Mg••
i }• example shown in figure 7.14. Consequently, figure 7.19 is

similar to that obtained for a supercell containing an Mg�Al defect and an Mg••
i defect (figure

7.15). A plot of the probability distribution of the defects separation during the simulation is

given in 7.20, and this is again very similar to the {Mg�Al:Mg••
i }• case (figure 7.16).

Figure 7.19: Plot of the defect separation as a function of the simulation time for a spinel supercell

containing a Mg�Al and an Al•••i defects.

An activation energy of 0.49 eV was obtained for the initial decay of the Al•••i -V��
Mg-Mg••

i split

interstitial to form the Al•Mg and Mg••
i -V��

Mg-Mg••
i defects. After the Al•••i -V��

Mg-Mg••
i defect

has decayed the simulation continues to follow the migration of an Mg••
i defect within the

strain field of an antisite pair. The presence of the Al•Mg defect increases the variation in the

migration energies for the Mg••
i defect (figure 7.17) compared to an Mg••

i defect migrating

within the strain field of an Mg�Al (figure 7.21), particularly at smaller separations.
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Figure 7.20: Plot of the probability distribution, G(r), as a function of the separation between a Mg�Al

and an Mg••
i defect.

Figure 7.21: Plot of the migration energies as a function of the separation between the Mg�Al defect and

the Mg••
i interstitial formed as a result of the Al•••i defect decaying. The horizontal lines represent the

migration energies for the isolated Mg••
i diffusion processes, the red line represents the the inplane (fig-

ure 5.16(b)), the black line is the migrate and twist mechanism (figure 5.16(c)), the blue line represents

the rearrangement process (figure 5.16(a)) and the green line represents the activation energy to escape

from the intermediate stage entered during the migrate and twist mechanism.
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Influence of an Mg�Al defect on migration of a V••
O defect

The final intrinsic defect/antisite pair to be investigated is that of V••
O diffusion in a supercell

also containing an Mg�Al defect. Figure 7.22 shows how this supercell evolves during the 0.28

ms simulation. As was the case in each of the previous cluster simulations the antisite defect is

not observed to diffuse over the timescale of the simulation and the V••
O defect migrates around

it. From figure 7.22 it appears that the V••
O defect is only very weakly bound to the Mg�Al

defect as it visits several lattice sites in the second and third nearest neighbour configurations,

however, the duration of time spent in these configurations is actually very small, as shown

in figures 7.23 and 7.24. The nearest neighbour configuration, in which the Mg�Al defects and

V••
O are separated by 1.90 Å, is the lowest energy configuration observed in the simulations.

Then the second nearest neighbour configuration is 0.24 eV higher in energy and the third and

fourth nearest neighbours are 0.91 and 0.78 eV higher in energy. Since the migration energies

to ‘hop’ from the first nearest neighbour to either second, third and forth nearest neighbours

are high (1.38, 1.90 and 1.82 eV respectively), the average lifetime of the nearest neighbour

configuration is large, 4.98 ns.

Figure 7.25 is a comparison of the migration energies for V••
O migration when isolated and in

the presence of an Mg�Al defect. The migration energies observed in the simulation contain-

ing the Mg�Al defect show significant deviation from the migration energies obtained for the

isolated V••
O defect. In the vacancy or interstitial defect/antisite clusters discussed previously,

the presence of the antisite defect creates a distribution in the migration energies centred about

the migration energy for the defect in isolation, however, for oxygen defects the antisite defect

modifies the V••
O migration energies such that they cannot be easily assigned to a similar pro-

cesses observed for the isolated oxygen defect. This is probably due to the significant distortion

of the oxygen sublattice resulting from the introduction of the antisite defect. Combined with

the high binding energies predicted between oxygen defects and the oppositely charged antisite

defect (chapter 4) this suggests that oxygen diffusion may be particularly sensitive to the level

of inversion present in a spinel material.

All of the previous cluster simulations have examined the interaction between an antisite defect

and vacancy or interstitial defects. In general, these simulations have all demonstrated very

similar behaviour, ie. the antisite defect is immobile and the vacancy or interstitial defect

migrates around it to varying degrees, dependent on the specific defects involved. This suggests
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Figure 7.22: Trace of a long timescale evolution of a spinel supercell containing a Mg�Al and an V••
O

defect.

Figure 7.23: Plot of the defect separation as a function of the simulation time for a spinel supercell

containing an Mg�Al and a V••
O defect.
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Figure 7.24: Plot of the probability distribution, G(r), as a function of the separation between a Mg�Al

and an V••
O defect.

Figure 7.25: Plot of the migration energies as a function of the separation between an V••
O defect and

a Mg�Al defect. The horizontal lines represent the migration energies for the isolated V••
O diffusion

processes.
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that mass transport will decrease as the level of inversion present in a crystal increases, due to

the antisite defects acting to trap the other defects that facilitate diffusion. Furthermore, this has

implications from a radiation damage perspective, because diffusion of defects is an essential

aspect of interstitial-vacancy point defect recombination. If vacancy and interstitial defects are

unable to diffuse through the lattice, because they have become trapped by an antisite defect,

they will be unable to recombine with each other and so the number of defects retained will be

higher. When Bacorisen et al. [74] performed MD cascade simulations in MgAl2O4, MgGa2O4

and MgIn2O4, they found that more damage was retained in the more inverted MgGa2O4 and

MgIn2O4 than in the perfect, MgAl2O4 spinel. Of course in the simulations of Bacorisen et

al. [74] they also changed the chemistry of the spinel material as well as the level of inversion

so it difficult to be definitive. Clearly, it would be desirable to repeat these simulations on

MgAl2O4 with levels of inversion relevant to real spinel crystals.

Whilst it is expected that clusters formed from antisite defects and interstitial/vacancy defects

will dominate, there are a number of other clusters which can form from combinations of the

interstitial and vacancy defects. These have also been investigated using TAD.

Mutual interactions between diffusing V••
O and V��

Mg defects

In the simulation shown in figure 7.26 the V��
Mg and V••

O defects were placed 10.15 Å apart

in the spinel supercell. Initially, the V��
Mg defect migrates towards the V••

O defect, which is

effectively stationary during the 0.59 ps taken for the magnesium vacancy to enter a second

nearest neighbour configuration. The total duration of the simulation shown in figure 7.26 is

8.35 ms. A plot of the separation between the two vacancies as a function of the simulation

time is given in figure 7.27 and it shows that the separation decreases very rapidly at the start of

the simulation until the defects are adjacent to each other. This nearest neighbour arrangement

of the {V••
O :V��

Mg}× cluster represents the lowest energy configuration and the second nearest

neighbour configuration is 1.93 eV higher in energy. It is because of this large difference in the

energies of the first and second nearest neighbour states coupled with the large migration energy

to leave the nearest neighbour configuration (2.04 eV) and the very small migration energy to

move from the second nearest neighbour configuration to a nearest neighbour configuration

that gives rise to the probability distribution shown in figure 7.28.
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At roughly 3.6 ms an Al3+ cation moves off of it site and forms a V���
Al-Al•••i -V��

Mg defect cluster

then the Al•••i defect then falls back onto the vacant aluminium site. The migration energy for

the Al3+ cation to migrate from its lattice site is 2.97 eV. Overall, however, the cluster does not

undergo net transport.

Figure 7.26: Trace of the long timescale evolution of a spinel supercell containing a V��
Mg and an V••

O

defect.

The migration energy as a function of the separation between the defects is presented in figure

7.29. Clearly as the only defect to perform any ‘hops’ at larger separations is the V��
Mg defect the

migration energies are similar to the migration energies for an isolated V��
Mg defect. At smaller

separations the V••
O defect is also observed to migrate with an migration energy of 2.04 eV and

a neighbouring aluminium cation is observed to move off its lattice site with a barrier of 2.97

eV.

Mutual interactions between diffusing V••
O and V���

Al defects

Figure 7.30 shows the evolution of a spinel supercell containing V���
Al and V••

O defects for a

duration of 63 ns. The V���
Al and V••

O defects are initially separated by 9.28 Å. During the
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Figure 7.27: Plot of the defect separation as a function of the simulation time for a spinel supercell

containing a V��
Mg and an V••

O defect.

Figure 7.28: Plot of the probability distribution, G(r), as a function of the separation between the defects

in a supercell containing a V��
Mg and an V••

O defect.
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Figure 7.29: Plot of the migration energy as a function of the separation between an V••
O defect and a

Mg�Al defect. The horizontal lines represent the migration energies for the isolated V••
O and V��

Mg diffusion

processes. The red and blue lines represent the migration energies for the V••
O diffusion process and the

green line represent the migration energy to reach the intermediate V��
Mg-Mg••

i -V��
Mg state and the black

line is the migration energy to leave the intermediate state.

simulation the V••
O defect migrates towards the effectively stationary V���

Al defect until they enter

a nearest neighbour configuration. There is a very significant Coulombic driving force for this

process as the aluminium vacancy has a charge of -3 and the oxygen vacancy has a charge of

+2. An indication of the very strong Coulombic interaction is demonstrated by the difference

in energy of the nearest and and fourth nearest neighbour defect configurations of -3.30 eV.

Once the defects are in a nearest neighbour configuration there were two migration processes

detected. The first of these is for the Al3+ cation to migrate towards a second nearest neighbour

configuration via an Al•••i -V��
Mg-Mg••

i intermediary with a migration energy of 1.23 eV and the

second is for the oxygen vacancy to migrate to occupy a second nearest neighbour site with

respect to the V���
Al defect with a migration energy of 1.29 eV. Both of these configurations are

short lived, therefore the nearest neighbour configuration is clearly the dominant configuration

for the {V••
O :V���

Al}� cluster (figure 7.32).

Figure 7.33 shows how the migration energy varies as a function of the separation between the

defects. At larger separations the V••
O defect migrates towards the V���

Al defect with a migra-

tion energy between the two migration energies predicted for the isolated V••
O defect. The red

horizontal line plotted in figure 7.33 indicates the migration energy required for a V���
Al defect

form a V���
Al-Al•••i -V���

Al intermediate state. Despite this transition being observed in the simula-
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Figure 7.30: Trace of the long timescale evolution of a spinel supercell containing V���
Al and V••

O defects.

Figure 7.31: Plot of the defect separation as a function of the simulation time for a spinel supercell

containing a V���
Al and an V••

O defects.
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Figure 7.32: Plot of the probability distribution, G(r), as a function of the separation between the defects

in a supercell containing V���
Al and V••

O defects.

tion shown in figure 7.33 there were no transitions observed in the simulation with migration

energies close to this value. In fact the presence of the V••
O defect reduces the migration energy

to enter the intermediate state to 1.23 eV. This is further evidence of the significant effect that

changes in the local environment can have on the migration energies for defect diffusion.

Mutual interactions between diffusing Mg••
i and O��

i defects

The evolution of a spinel supercell containing a Mg••
i and an O��

i defect, for a simulation time

of 9.66 ns, is shown in figure 7.34: unlike any of the other clusters discussed, the cluster itself

is mobile and able to move throughout the supercell. The exact mechanism for this process is

complex but should be pictured as a ‘tethered’ hoping process whereby the more mobile O��
i

defect migrates around the Mg••
i defect and then eventually the Mg••

i defect hops and the O��
i is

dragged along. A brief summary showing six consecutive timesteps in the simulation is given

in figure 7.35. In figure 7.35 the Mg••
i -V��

Mg-Mg••
i defect moves upwards across the cell as the

O��
i defect migrates around it. The migration energy for the Mg••

i defect as predicted, in section

7.3.1, was 0.53 eV, however, the presence of the O��
i defect leads to a small decrease in the

migration energy to 0.49 eV.

The dominant configuration of the defects as they migrate through the lattice is a split Mg••
i -

V��
Mg-Mg••

i with an octahedral O��
i defect located 4.32 Å from the vacant magnesium site.
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Figure 7.33: Plot of the migration energy as a function of the separation between an V••
O defect and a

V���
Al defect. The horizontal lines represent the migration energies for the isolated V••

O and V���
Al diffusion

processes, the red line is the migration energy to enter the intermediate, V��
Mg-Al•••i -V��

Mg, state and the

blue and green lines are the V••
O diffusion migration energies.

Figure 7.34: Trace of the long timescale evolution of a spinel supercell containing a Mg••
i and an O��

i

defect.
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6

Figure 7.35: Six consecutive steps in the simulation of a spinel simulation containing an O��
i and a

Mg••
i defect. Figures (a)-(f) show the interplay between the O��

i and Mg••
i defects as they migrate

in a cooperative, ‘tethered’ mechanism. The red spheres represent oxygen interstitial ions, the red

cube represents an oxygen vacancy, the yellow spheres represent magnesium interstitial ions and the

transparent yellow cube represents a magnesium vacancy.
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Both the O��
i and Mg••

i defects form complex split interstitial structures aligned along the �110�

directions, therefore, their interaction energy is not merely dependant on the separation be-

tween them but also their relative orientations. A plot showing how the separation between

the defects changes as a function of simulation time is given in figure 7.36. Initially the de-

fects are situated 4.51 Å apart in an {O��
i :Mg••

i -V��
Mg-Mg••

i }× configuration. For the first 85

ps the separation between the defects alternate between this initial defect configuration and

an {O��
i -V••

0 -O��
i :Mg••

i -V��
Mg-Mg••

i }× configuration where the vacancy defects are separated by

6.09 Å. After 85 ps the cluster enters a {O��
i :Mg••

i -V��
Mg-Mg••

i }× configuration where the de-

fects are separated by 4.32 Å. The presence of two very similar defect clusters with only a

slight difference in the separation between them arises as a result of the slight distortion in

oxygen sublattice associated with the oxygen u parameter. The dominant configuration of the

defects as they migrate through the lattice is a split Mg••
i -V��

Mg-Mg••
i with an octahedral O��

i

defect located 4.32 Å from the vacant magnesium site (figure 7.37).

Figure 7.36: Plot of the defect separation as a function of the simulation time for a spinel supercell

containing a Mg••
i and an O��

i defect.

A comparison between the migration energies of the isolated O��
i and Mg••

i defects and the

defects in the supercell shown in figure 7.34 is given in figure 7.38. As the majority of the mi-

gration processes that occur during the simulation involve the O��
i defect the migration energies
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Figure 7.37: Plot of the probability distribution, G(r), as a function of the separation between the defects

in a supercell containing a Mg••
i and an O��

i defect.

are predominantly distributed around the green line representing the isolated O��
i defect migra-

tion. There are a number of processes with higher energy barriers, corresponding to either the

Mg••
i inplane process (figure 5.16(b)) or the O��

i rearrangement processes, however, in general

it suggests that the presence of the O��
i defect acts to reduce the migration energy for Mg••

i

diffusion in spinel. This cooperative diffusion process is similar to that observed by Uberuaga

et al. [137, 143] for interstitial clusters in MgO.

Mutual interactions between diffusing Al•••i and O��
i defects

The final defect cluster to be examined is the {Al•••i :O��
i }• cluster. In previous examples the

Al•••i -V��
Mg-Mg••

i interstitial defect has proven to be unstable and decay to form an Al•Mg defect

and an Mg••
i -V��

Mg-Mg••
i defect. As shown in figure 7.39 the presence of the O��

i defect is not

sufficient to stabilise the Al•••i -V��
Mg-Mg••

i defect and so it decays within the first 0.19 ns of the

1.5 ns simulation. After the Al•••i defect has collapsed, the cell contains an Al•Mg, an O��
i and an

Mg••
i defect. Once it has formed, the Al•Mg defect is not seen to move throughout the remainder

of the simulation, however, it does serve to ‘anchor’ the O��
i interstitial defect thereby inhibiting

the cooperative {O��
i :Mg••

i }× cluster diffusion mechanism described above. The separation

between the O��
i defect and the Mg••

i defect as a function of the simulation time is shown in

figure 7.40 and is very similar the pattern obtained for the {O��
i :Mg••

i }× cluster without the
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Figure 7.38: Plot of the migration energies as a function of the separation between an O��
i defect and a

Mg••
i defect. The horizontal lines represent the migration energies for the isolated O��

i and Mg••
i diffu-

sion processes: the red line is the migration energy for the migrate in plane, Mg••
i mechanism (figure

5.16(b)), the blue and green lines are the O��
i rotation mechanisms, the black and brown lines represent

the migrate and twist mechanism (figure 5.16(c)) and the rearrangement process (figure 5.16(a)) and the

light green line is the linear O��
i migration energy and finally the pink line is the migration energy to

escape from the intermediate state which is part of the Mg••
i migrate and twist process.
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antisite defect nearby, shown in figure 7.36. The dominant configuration for the O��
i and Mg••

i

defects is for them to be in a second nearest neighbour (figure 7.41) configuration, similar to

the {O��
i :Mg••

i }× cluster.

Figure 7.39: Trace of the long timescale evolution of a spinel supercell containing an Al•••i and an O��
i

defect.

Figure 7.42 shows how the separation between the O��
i and the Mg••

i defect affects their mi-

gration energy. The distribution of the migration energies is increased compared to an isolated

{O��
i :Mg••

i }× cluster due to the presence of the Al•Mg defect. More interesting is the appearance

of several higher energy migration processes that appear unrelated to the isolated diffusion

process of the O��
i and Mg••

i defects. The highest energy migration process (1.27 eV) found

in the simulation shown in figure 7.39 represents a realignment of the Mg••
i -V��

Mg-Mg••
i defect,

very similar to isolated Mg••
i rearrangement process (0.72 eV). This clearly demonstrates the

affect that the presence of other point defects can have on the diffusion processes responsible

for mass transport in a complex oxide material, such as spinel.

The migration energies, Em, quoted in table 7.1 represent the energies required for the mi-

gration of the intrinsic point defects in an otherwise perfect spinel crystal, however, in a real
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Figure 7.40: Plot of the defect separation as a function of the simulation time for a spinel supercell

containing an Al•••i and an O��
i defect.

Figure 7.41: Plot of the probability distribution, G(r), as a function of the separation between the defects

in a supercell containing an Al•••i and an O��
i defects. After the Al•••i -V��

Mg-Mg••
i defect has collapsed

the separation is measured between the Mg�Al and the resultant Mg••
i defect.
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Figure 7.42: Plot of the migration energy as a function of the separation for an O��
i defect and an Mg••

i

defect (the Mg••
i defect is the result of the decay of the Al•••i -V��

Mg-Mg••
i defect). The horizontal lines

represent the migration energies for the isolated O��
i and Mg••

i diffusion processes: the red line is the

migration energy for the migrate inplane, Mg••
i mechanism (figure 5.16(b)), the blue and green lines

are the O��
i rotation mechanisms, the black and brown lines represent the migrate and twist mechanism

(figure 5.16(c)) and the rearrangement process (figure 5.16(a)) respectively, and the light green line

is the linear O��
i migration energy and finally the pink line is the migration energy to escape from the

intermediate state, which is part of the Mg••
i migrate and twist process.
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material there will be a degree of cation inversion that can, as suggested above, have a signif-

icant impact on defect diffusion. Should a point defect become trapped by a highly immobile

antisite defect then it will no longer be able to continue to facilitate mass transport until it

has become dissociated from the antisite and is free to move. In order to become dissociated

from the antisite defect, sufficient energy is required to overcome the energy that binds them

together. Therefore, an approximation to the migration energy in a real material can be given

by summing the isolated migration energy and the binding energy. These clustered Em values

are given in table 7.2.

In the isolated case the O��
i defect was was the most mobile, however, due to the large binding

energy present between it and the Al•Mg defect this model predicts in a real material containing

a significant concentration of antisite defects the V��
Mg defect will be most mobile. Effectively,

at negligible levels of inversion (and assuming the concentration of the V��
Mg and O��

i defects

was the same) oxygen is predicted to be the most mobile ion in spinel. At higher levels of

inversion, however, the magnesium cation is predicted to be more mobile. Independent of the

level of inversion present in the crystal the aluminium cation is predicted to be the least mobile.

Table 7.2: Comparison of isolated and clustered migration energies for defect migration in spinel. The

clustered migration energies are the sum of the isolated migration energies and the binding energies

determined without a shell model in chapter 4.

Defects Antisite Defect Binding Energy /eV Isolated Em /eV Clustered Em /eV

V��
Mg Al•Mg -0.91 0.68 1.59

Mg••
i Mg�Al -1.24 0.53 1.77

V���
Al Al•Mg -1.72 1.98 3.7

Al•••i Mg�Al -1.82 unstable unstable

V••
O Mg�Al -1.85 2.47 4.32

O��
i Al•Mg -2.36 0.30 2.66

7.4 Summary

The simulations presented in this chapter have highlighted the complexity introduced by con-

sidering the diffusion of clusters of point defects as opposed to isolated defects. Although it

was only possible to investigate some very simple dimer defect clusters it is possible to offer
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the following general predictions concerning the nature of defect cluster diffusion:

• The TAD simulations suggest that the Mg�Al and Al•Mg defects are extremely immobile, in

fact, at no point in the simulations presented in this chapter were antisite defects shown

to migrate from the sites on which they were placed at the start of the simulation. Also

evident from the simulations is the attraction between the stationary antisite defects and

the more mobile vacancy and interstitial defects responsible for mass transport in spinel.

If the vacancy and interstitial defects become bound to the immobile antisite defects then

they are clearly unable to facilitate diffusion. Therefore, at the concentrations described

here, the simulations predict that the introduction of antisite disorder will retard mass

transport. This observation is important with regards to spinel’s radiation tolerance as

it suggests that in a spinel with a high degree of inversion the defects created during a

thermal energy spike are unable to migrate through the lattice and recombine, therefore,

a higher level of damage will remain after irradiation. The efficiency of point defect re-

combination is central to spinel’s radiation tolerance and therefore by introducing antisite

defects and restarding the process spinel’s tolerance to irradiation will be reduced.

• The above point appears to contradict the prediction in chapter 5, that the most favourable

mechanism for Al3+ transport is via a vacancy mechanism on the magnesium sublattice

(ie. the Al•Mg was not observed to migrate during the simulation). In both the model

where polarisability was included (chapter 5) and the TAD simulations presented in this

chapter it was predicted that the lowest migration energy for Al3+ diffusion is via a

vacancy mechanism on the magnesium sublattice. For comparison, chapter 5 predicted a

migration energy of 0.88 eV for the Al•Mg + V��
Mg process and 1.83 eV for the V���

Al process,

the equivalent values obtained using the model that does not include polarisation are 1.18

eV and 1.72 eV. Clearly, therefore, it would be expected that the Al•Mg defect would ‘hop’

onto a neighbouring vacant magnesium site more regularly than a V���
Al defect ‘hops’ onto

a neighbouring aluminium site. During the simulation of a spinel supercell containing a

V���
Al defect, the average time for each V���

Al hop is 15 ns, however, the Al•Mg defect was not

observed to migrate during a simulation of duration 17.5 ns. One reason why the Al•Mg

migration is retarded is due to the presence of other processes competing with the Al•Mg +

V��
Mg →V��

Mg + Al•Mg process. These competing processes see the V��
Mg defect exchanging

with neighbouring Mg×Mg ions and moving the V��
Mg defect away from the Al•Mg defect.

As the Al•Mg defect can only migrate when the V��
Mg is on an adjacent magnesium site
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this will impede Al3+ diffusion. The TAD simulation (shown in figure 7.2) predicts that,

at 1500 K, the V��
Mg defect spends only 11% of the simulation on a site adjacent to the

Al•Mg(figure 7.4), therefore the Al3+ can only attempt a ‘hop’ for 11% of the time. The

factors responsible for the fraction of time spent in the nearest neighbour configuration

include the relative energies of the different configurations and the relative migration

energies to move between them. In chapter 5 the migration energy for the V��
Mg defect to

migrate to a second nearest neighbour site from the Al•Mg defect was predicted to be 0.53

eV (compared with 0.88 eV for the Al•Mg ‘hop’). Excluding the effects of polarisation,

however, the migration energy for the V��
Mg migration to a second nearest neighbour

site was 0.66 eV (compared with 1.18 eV for the Al•Mg ‘hop’). As the processes are

competing this suggests that the Al•Mg migration process is considerably less probable

when the shell model is not employed, as is the case in the TAD simulations. One

possible solution to this apparent contradiction would be to implement the shell model

in the TAD code and then repeating the simulation of a spinel supercell containing an

Al•Mg and V��
Mg defect.

• As a result of the high binding energy between the O��
i defect and the Al•Mg defect the O��

i

defect is no longer predicted to be the most mobile defect when considering migration in

a sample containing some degree of cation inversion. In a sample with a significant de-

gree of cation inversion this model predicts that the V��
Mg defect will be the most mobile.

• The local distortion in the lattice resulting from a point defect’s strain field can lead to

significant spread in the energies of defect migration processes. In particular, the intro-

duction of antisite defects can cause significant perturbation of the oxygen sublattice;

coupled to the high binding energies between oxygen and antisite defects this suggests

that oxygen diffusion is strongly dependant on the level of inversion present in the sam-

ple. Thus, when considering experimental measurements of the activation energy for

diffusion it would be important to know the level of inversion, although the experimental

values for oxygen diffusion [139–141] are all in very reasonable agreement with each

other (the levels of inversion present in the experimental spinel crystals were not re-

ported).

• In general defect clustering is predicted to act in a manner that is detrimental to mass

transport, however, one notable exception was highlighted. The {O��
i :Mg••

i }× defect

cluster has a lower migration energy than an isolated Mg••
i defect, that is, the presence
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of the O��
i defect acts to promote Mg2+ transport in spinel. This process is similar to the

{O��
i :Mg••

i }× interstitial cluster diffusion process observed by Uberuaga et al. [137,143]

in MgO. These complex migration processes would be very difficult to predict from

the crystal structure and therefore it demonstrates the power of accelerated dynamical

techniques, such as TAD, to predict complex diffusion mechanisms.
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8
Nonstoichiometry in spinel

This work has been accepted for publication in Philosophical Magazine [144].

8.1 Introduction

The MgO-Al2O3 ‘pseudo binary’ phase diagram [25] (shown in figure 2.9) exhibits only one

intermediate phase, magnesium aluminate spinel, MgAl2O4. At temperatures below 1300 K,

spinel is shown as a line compound, occurring at an exactly equimolar fraction of MgO and

Al2O3 whilst above this temperature the spinel phase can exhibit considerable nonstoichiom-

etry. Interestingly, the high temperature spinel phase field is not symmetric about the stoichio-

metric ratio, but accommodates a greater degree of Al2O3 than MgO excess. Such is the degree

to which the spinel phase can accommodate excess alumina, that at 2200 K the spinel phase

is still evident in the phase diagram at an mole fraction of 0.9 Al2O3 [25]. Furthermore, cubic

γ-alumina has been shown to closely resemble a defect spinel spinel material [145].

Given the predominance of the antisite defect process, cation antisite defects play a central

role in the accommodation of nonstoichiometry. These charged defects are compensated for

by other, oppositely charged, point defects (but not their opposite cation antisite species, as

that would not lead to a change in stoichiometry). In particular, spinel crystals with an Al2O3

excess are characterised by Al•Mg defects [146, 147], which can be charge compensated by

either O��
i , V��

Mg or V���
Al defects (see equations 8.1-8.3). MgO rich spinel crystals incorporate

Mg�Al defects [148], charge compensated for by either V••
O , Mg••

i or Al•••i (see equations 8.4-
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8.6).

3Al2O3 +2Mg×Mg → 2Al•Mg +O��
i +2MgAl2O4

→ Al•Mg +{O��
i : Al•Mg}�+2MgAl2O4

→ {O��
i : 2Al•Mg}×+2MgAl2O4 (8.1)

4Al2O3 +3Mg×Mg → 2Al•Mg +V��
Mg +3MgAl2O4

→ Al•Mg +{V��
Mg : Al•Mg}�+3MgAl2O4

→ {V��
Mg : 2Al•Mg}×+3MgAl2O4 (8.2)

4Al2O3 +3Mg×Mg +Al×Al → 3Al•Mg +V���
Al +3MgAl2O4

→ 2Al•Mg +{V ��
Al : Al•Mg}��+3MgAl2O4

→ Al•Mg +{V���
Al : 2Al•Mg}�+3MgAl2O4

→ {V���
Al : 3Al•Mg}×+3MgAl2O4 (8.3)

3MgO+2Al×Al +O×
O → 2Mg�Al +V••

O +MgAl2O4

→ Mg�Al +{V••
O : Mg�Al}• +MgAl2O4

→ {V••
O : 2Mg�Al}×+MgAl2O4 (8.4)

4MgO+2Mg×Mg → 2Mg�Al +Mg••
i +MgAl2O4

→ Mg�Al +{Mg••
i : Mg�Al}• +MgAl2O4

→ {Mg••
i : 2Mg�Al}×+MgAl2O4 (8.5)
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4MgO+3Al×Al → 3Mg�Al +Al•••i +MgAl2O4

→ 2Mg�Al +{Al•••i : Mg�Al}•• +MgAl2O4

→ Mg�Al +{Al•••i : 2Mg�Al}• +MgAl2O4

→ {Al•••i : 3Mg�Al}×+MgAl2O4 (8.6)

Equations 8.1-8.6 also describe how it is possible for the antisite defects accommodating MgO

or Al2O3 excess and their charge compensating point defects to form clusters. Defect clustering

was shown to reduce the reaction energy for the Frenkel and Schottky processes in section 4.3.3

and [75, 121] and may play a significant role in the incorporation of nonstoichiometry.

There have been several studies of the mechanisms by which excess MgO and Al2O3 are incor-

porated into spinel. Unfortunately, in the case of Al2O3 excess, there is considerable disagree-

ment concerning the type of defect that compensates for the Al•Mg antisite defects. The exper-

imental work of Jagodzinski and Saalfeld [149] suggests that cation vacancies are the primary

charge compensating defect in an Al2O3 rich material. Sheldon et al. [150] go further and sug-

gest that the vast majority of these vacancy defects will be located on the octahedral sublattice,

ie. V���
Al defects. Conversely, the X-ray microanalysis of a single crystal, (MgO) · (Al2O3)2.4, by

Soeda et al. [151] and Sawabe et al. [152] suggests that the concentration of vacancies on the

tetrahedral sublattice is increased. Okuyama et al. [153] suggest, from their hydrogen solubil-

ity experiments, that as the degree of Al2O3 excess is increased the concentration of oxygen

vacancy defects is increased. Clearly, as the Al•Mg defect and the V••
O defect share the same

charge, the excess Al2O3 must be accommodated in another way; they suggest magnesium va-

cancies. Conversely, radioactive tracer diffusion experiments by Ando et al. appeared to show

very little change in oxygen ion diffusion when moving away from a stoichiometric spinel

sample to an Al2O3 rich material [138], which suggests the concentration of oxygen carriers in

spinel is unchanged. Oxygen vacancy defects are, however, proposed as the principle means of

charge compensation in an MgO rich material [148].

Spinel’s impressive tolerance to radiation induced damage is normally attributed to three im-

portant factors: i). the rate of interstitial-vacancy recombination is very quick, ii). its ability

to accommodate a significant degree of disorder on its cation sublattices and iii). complex

chemistry ensures that the critical size of a dislocation loop is unusually large [61]. The search
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for materials which improve upon spinels, already impressive resistance to neutron irradiation

induced amorphisation led Sickafus et al. [146] and Soedi et al. [151] to hypothesize that as

the concentration of cation vacancies increases in an Al2O3 rich spinel, the rate of intersti-

tial vacancy recombination will be enhanced, thus leading to improved irradiation tolerance.

Contrary to this expectation, Sickafus et al. [146] discovered that Al2O3 excess spinel actu-

ally undergoes a transformation to a metastable crystalline state at a lower dose rate than the

stoichiometric spinel (1-2 dpa for the Al2O3 rich sample versus 10 dpa for the stoichiometric

sample) when irradiated by Xe2+ ions under cryogenic conditions. However, Ne+ irradiation

studies of Soeda et al. [151], at 873 K, suggest that the structural vacancies present in the

Al2O3 rich spinel do in fact increase the effectiveness of interstitial-vacancy recombination.

This discrepancy between the results of Sickafus et al. [146] and Soeda et al. [151] may be due

to the cryogenic temperatures employed by Sickafus, effectively retarding interstitial vacancy

recombination, regardless of the relative concentrations of the vacancy defects.

The aim of this chapter is to use atomistic simulation techniques to predict energies, for the

processes described by equations 8.1-8.6 and draw conclusions concerning the most likely

method of charge compensation in both MgO and Al2O3 excess spinel.

8.2 Results and discussion

The binding energy for the defect species, described in equations 8.1-8.6, determined using the

empirical pair potential model, are reported in the first column of numbers in table 8.1. This

table predicts that all the defect clusters, described in equations 8.1-8.6, are stable compared to

their constituent defects. Furthermore as each series of defect cluster incorporate more species

(eg. {V���
Al:Al•Mg}�� → {V���

Al:2Al•Mg}� → {V���
Al:3Al•Mg}×), the total binding energy increases -

larger clusters are more stable.

Therefore, for each incorporation process (ie. 8.1-8.6) the reaction energy to dissolve one for-

mula unit of Al2O3 or MgO (shown in table 8.1) decreases as the defects form larger clusters.

However, the degree to which clusters are formed will depend on several factors, specifically:

the degree of nonstoichiometry (greater nonstoichiometry leads to more clustering), the tem-

perature (higher temperatures promote the dissolution of defect clusters) and the level of in-

version present in the lattice (itself a function of the temperature [43]). Clearly the degree of
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cluster formation is a complex issue. Nevertheless, we can consider two limiting situations.

The first assumes that deviations from stoichiometry are small enough that the antisite defects

concentrations are still dominated by the antisite reaction (ie. [Al•Mg]�[Mg�Al]) but other defect

concentrations are controlled by the nonstoichiometry rather than by Schottky or Frenkel equi-

libria. The second, is focused on larger deviations from stoichiometry, where all point defect

concentrations (including the antisite defects) are dominated by the nonstoichiometry.

8.2.1 Small deviations from stoichiometry

At the small deviations limit, take as an example excess Al2O3, accommodated by Al•Mg de-

fects, charged compensated for by O��
i defects (ie. equation 8.1). It is possible to determine

the relative concentrations of the clustered (ie. {O��
i : 2Al•Mg}×) and isolated (ie. O��

i ), charge

compensating, defects using mass action analysis and the binding energies obtained using the

empirical model. We start from equation 8.7, which describes the process whereby two Al•Mg

defects form a cluster with a charge compensating O��
i defect.

O��
i +2Al•Mg →{O��

i : 2Al•Mg}× (8.7)

The reaction energy for this process is the binding energy for the {O��
i : 2Al•Mg}× cluster (ie.

-2.82 eV from table 8.1). In order to compare the relative populations of the isolated and cluster

defects it is necessary to consider the mass action equation 8.8, which is derived from equation

8.7;

�
{O��

i : 2Al•Mg}×
�

�
O��

i
��

Al•Mg
�2 = exp

�
2.82
kBT

�
(8.8)

where, kB is Boltzmann’s constant and T is the temperature. By assuming that the antisite

concentrations are dominated by the intrinsic antisite process (equation 4.1), for which the

energy is 1.46 eV, it is possible to obtain the following relation [75].

�
Al•Mg

�
=

�
Mg�Al

�
= exp

�
−0.73
kBT

�
(8.9)
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Substituting equation 8.9 into 8.8 and rearranging gives,

�
{O��

i : 2Al•Mg}×
�
=

�
O��

i
�

exp
�

1.36
kBT

�
(8.10)

Clearly, even at this low nonstoichiometry limit, the concentration of O��
i defects bound in neu-

tral trimer clusters will dwarf the concentration of those found in isolation (eg. by a factor

of 106 at 1000 K). Extending this to the other process for incorporation of nonstoichiomety

in spinel (ie. equations 8.2-8.6), it is possible to show that defect clusters will be stable over

isolated defects (both charged or neutral clusters) if BEx +0.73n� 0, where BEx is the binding

energy of the defect cluster and n is the number of antisite defects in the defect cluster. Using

the values reported in table 8.1 it is clear that for reactions 8.1, 8.3, 8.4, and 8.6 clusters are

stable up to the charge neutral clusters. For reaction 8.2, however, clusters in this very low tem-

perature regime will only dominate up to the pair {V��
Mg:Al•Mg}�. Similarly for reaction 8.5, the

dimer {Mg••
i :Mg�Al}� cluster will dominate rather than the {V��

Mg:2Mg�Al}× cluster. Irrespective,

we conclude that clusters will dominate despite the very low level of nonstoichiometry.

8.2.2 High nonstoichiometry regime

At greater deviations from stoichiometry, and again taking solution of Al2O3 as the example,

the concentration of Al•Mg defects is no longer controlled by equation 2.29 and we need to

explicitly choose a concentration for Al•Mg defects. Thus, by substituting, for example, a modest

value eg.
�
Al•Mg

�
= 0.1, into equation 8.8 yields,

�
{O��

i : 2Al•Mg}×
�
=

�
O��

i
�
·0.12 · exp

�
2.82
kBT

�
(8.11)

Equation 8.11 predicts that in this greater nonstoichiometric regime, defect clusters are again

dominant (eg. by a factor of 1012 at 1000 K). Equivalent relationships to equation 8.11, that

describe to the relative concentration of {V��
Mg:2Al•Mg}× to the V��

Mg defect etc. show that these

neutral clusters are entirely dominant at a nonstoichiometry of 0.1 or greater, below 1000 K.

Consequently, when comparing the reaction energies for the processes shown in equations 8.1-

8.6, only the reactions involving the largest (ie. most bound) clusters need to be considered.
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Consequently, only the incorporation energies per formula unit of Al2O3 and MgO involving

the largest defect clusters are compared with the DFT simulations of Gilbert et al. [121]. These

values are included in the last column in table 8.1.

The empirical model data in table 8.1 shows that the most thermodynamically favourable

method for accommodating Al2O3 excess is via three Al•Mg defects clustered with the charge

compensating V���
Al defect to form the neutral {V���

Al : 3Al•Mg}× cluster, as described by equation

8.3. For the same reaction the DFT simulations predicted an incorporation energy per for-

mula unit of 0.46 eV but importantly this was not predicted to be the lowest energy process.

DFT simulations suggest that charge compensation of the excess Al•Mg concentration is via

{V��
Mg:2Al•Mg}× clusters (ie. reaction 8.2), with an incorporation energy of 0.40 eV. Clearly, the

difference in energies, predicted by the DFT simulations, is very small (0.06 eV), that is, the

simulations do not predict a strong difference in the energies associated with the two processes.

The difference in the absolute energies obtained using the empirical model and DFT arises as

a result of employing full charges in the pair potential, overestimating the Coulombic interac-

tion between the defects. Nevertheless, both models agree that the least favourable method for

Al2O3 excess incorporation is via {O��
i :2Al•Mg}× clusters (ie. reaction 8.1). Overall, therefore,

the simulations predict that as the extent of Al2O3 excess is increased, there may be a con-

comitant rise in the concentration of both cation vacancy species. It is, however, not possible

to predict, from these results, which will dominate. This would require many calculations to be

carried out with explicit high defect concentrations and even then we may well find both cation

vacancies are involved.

Both empirical and DFT simulations predict that lowest energy process for excess MgO incor-

poration is via {Mg••
i :2Mg�Al}× clusters (equation 8.5). Additionally, both methods predict that

the incorporation energy of MgO per formula unit by {V••
O :2Mg�Al}× clusters is only marginally

larger (0.03 and 0.09 eV for the empirical and DFT simulations respectively). Consequently,

the models predict that a MgO rich material will incorporate both Mg••
i and V••

O defects. Con-

versely, the energy for MgO excess incorporation by {Al���i : 3Mg�Al}× clusters was predicted

to be a high energy process. This is likely related to the observation that the Al•••i -V��
Mg-Mg••

i

defect is only metastable and decays to form the {Al•Mg:Mg••
i }••• defect cluster [75, 116].

Significantly, the incorporation energy, per formula unit, for Al2O3 excess is lower than for
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MgO. This offers one explanation for the asymmetry observed in the phase diagram [25].

8.3 Summary

The results presented here allow us to draw the following conclusions:

• In nonstoichiometric spinel the defect chemistry will be dominated by clusters formed

from antisite defects, which accommodate the nonstoichiometry, and other point defects

present in the lattice that preserve overall charge neutrality.

• Al2O3 excess nonstoichiometry will be characterised by an increased concentration of

cation vacancy defects, as predicted by Jagodzinski and Saalfield [149], although given

the small energy difference between the V��
Mg charge compensation process (equation

8.2) and the V���
Al charge compensation process (equation 8.3) there is no clear prefer-

ence for one over the other. It may well be that both are involved even at significant

nonstoichiometry.

• MgO excess nonstoichiometry will be characterised by an increased concentration of

defect clusters involving either Mg••
i and V••

O defects and at higher deviations from sto-

cihiometry these are the charge neutral {Mg••
i : 2Mg�Al}× and {V••

O : 2Mg�Al}× defect

clusters.

• The incorporation energy, per formula unit, for Al2O3 is lower than for MgO, which may

explain why the spinel lattice accommodates a greater degree of Al2O3 excess than MgO

excess, as observed in the phase diagram [25].
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9
General relationships for cation substi-
tution in oxides

This work has been submitted to Journal of Physics and Chemistry of Solids [154].

9.1 Introduction

In a perfect crystal, each ion occupies a defined symmetry site within a unit cell. Substitutional

disorder occurs when a lattice ion is replaced by an ion of a different type [10]. An impurity

ion can occupy lattice sites with little disturbance to the overall crystal if the substitutional ion

is of similar size and the same charge as the ion it replaces. Differences in size between the

host ion and the substitutional ion will induce stress in the lattice; in response the ions of the

crystal adjust their positions until each ion experiences zero (time averaged) force.

One measure of the relative size of the host and substitutional ion, ε, is described by equation

9.1,

ε =
asub−ahost

ahost
(9.1)

where, ahost and asub are lattice parameters of the host and substituent oxide lattices so that ε

might be described as a lattice “strain” term. The reason for using lattice parameters and their

differences as a guide to cation size changes is that it avoids problems associated with defining

an artificial measure such as cation radius [155, 156]. Consequently, here, when we discuss
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CHAPTER 9. General relationships for cation substitution in oxides

cation size difference, it implicitly refers to differences in lattice parameter of the rocksalt

structures to which the different cations give rise.

We use atomistic simulation, both a parameterised empirical model and a density functional

theory (DFT) quantum mechanical approach, to establish relationships between: i) ε and the

internal energy of solution and ii) ε and the volume change resulting from the substitution

of cations into simple binary, MO, metal oxides. A particular aim is to determine if such

relationships can be identified that are independent of the host oxide.

The cations selected for this study are; Ba2+, Ca2+, Cd2+, Co2+, Mg2+, Mn2+ and Sr2+, the

oxides of which all exhibit the rocksalt structure. A rocksalt unit cell is assigned the Fm3̄m

space group where the cation and oxygen sublattices form interpenetrating face centred cubic

arrays, such that the cations and anions are octahedrally coordinated. The cations are assigned

to the 4a Wyckoff sites and the oxygen anions are assigned to the 4b sites [157].

Substitution of a divalent cation, S, into a rocksalt oxide, MO, is an isovalent process (ie. the

charge of the substitutional cation and the host cation it replaces are identical) and is illustrated

(in Kröger-Vink notation [15]) by equation 9.2,

SO+M×
M → S×M +MO (9.2)

where, M×
M represents an M2+ cation on its host lattice site, SO contains the substitutional

cation in an oxide and S×M shows the substitutional cation, now residing on a host cation lattice

site. As this is an isovalent process, there are no charge compensating defects to consider.

9.2 Methodologies

9.2.1 Empirical pair potentials

The pair potential parameters used here are taken from [158] except for the Mn2+-O2− po-

tential, which was derived specifically for this work, giving Ai j=697.84 eV, ρi j=0.3252 Å and

Ci j=0.0 eV Å6. This Mn2+-O2− potential replicates the MnO lattice parameter to within 0.4%.
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Due to the relatively high polarisability of O2−, the shell model of Dick and Overhauser [85]

was applied to describe this polarisability. In this model the core was assigned a charge of 0.04

|e| and the shell -2.04 |e| thereby ensuring the overall charge on the ion was equal to the full

valence charge. The core and shell interact through a harmonic force constant of k = 6.3 eV

Å−2.

Defect volumes were calculated within the Mott-Littleton methodology [94]. In order to com-

pare the relative magnitude of defect volumes between host lattices, each defect volume is

divided by the volume of the host primitive unit cell, VpMO (ie. we introduce a normalisation

factor).

To allow direct comparison with the DFT simulations described below (where there is currently

no equivalent to the Mott-Littleton methodolgy), empirical potential based defect energies were

also determined using a supercell method. In this approach, the lattice energy of a perfect host

supercell that contains xMO formula units, EMxOx , a cell in which one of the cations has been

substituted for an extrinsic ion, EMx−1SOx , and the primitive cell of the substituted ion oxide ESO

are all calculated. The defect energy, Esol , is then the difference between the lattice energies

(after they have been fully relaxed subject to energy minimisation), as shown in equation 9.3.

Esol =
(x−1)

x
EMxOx +ESO−EMx−1SOx (9.3)

In the supercell approach the cell containing the substitutional defect is tesselated through

space, therefore, there is the possibility that if the supercell is not sufficiently large, the strain

fields of the defects will overlap significantly. Such defect-defect interactions will not occur

for defects in the dilute limit (as determined using the Mott-Littleton methodology [89]). This

problem can be assessed by selecting a range of supercells to establish whether the interactions

between defect images are of significance. Here two different supercells were adopted, one

constructed of 2×2×2 full unit cells (ie. x=32) and a 3×3×3 supercell (ie. x=108).

In the supercell approach the defect volume is calculated by determining the volume of a perfect

unit cell, VMO, and subtracting this from the volume of a cell containing a substitutional defect,

VM1−xSxO. This volume is again divided by the volume of the relaxed, perfect primitive unit cell

of the host lattice, ie.
�
VMO−VM1−xSxO

�
/VpMO.

169



CHAPTER 9. General relationships for cation substitution in oxides

All empirical simulations were conducted using the CASCADE simulation package [119].

9.2.2 Density Functional Theory

One limitation of first principles simulation are the high demands they place on the computa-

tional resources, therefore, their application is usually limited to smaller systems than empirical

potential based simulations. The DFT simulations of isovalent substitution reported here em-

ployed a 2×2×2 cubic supercell.

In the simulations the exchange correlation energy was modelled using the Local Density Ap-

proximation (LDA) and a k-point grid with separations of 0.05 Å−1. Ultrasoft pseudopotentials

were used and the planewave cutoff energy was converged at a value of 420 eV. The DFT sim-

ulations were conducted using the CASTEP [108] software package.

9.3 Results and discussion

9.3.1 Solution energy as a function of ε

Figure 9.1, shows the internal energy of solutions for divalent cations (ie. Mg2+, Ca2+, Cd2+,

Co2+, Mn2+, Sr2+ and Ba2+) substituted into a series of rocksalt materials (ie. MgO, CaO,

CdO, CoO, MnO, SrO and BaO), as a function of ε. The enthalpies of solution were determined

using all three approaches described previously.

In the case of Mott-Littleton calculations, the enthalpy of solution is a balance between the

difference in the lattice energies of the host and substituted cation oxides and the defect en-

ergy of the substituted ion. Substitution of larger cations results in positive defect energies

but the lattice energy differences are negative (ie. host lattice energy is more negative than

that of the substituted cation oxide). Small substitutional cations have negative defect energies

but the balance in lattice energies is positive. Figure 9.1 shows that the solution enthalpy in

both these circumstances, is always positive (ie. the total process is endothermic). Further-

more, as the magnitude of ε increases (ie. the difference between the host and substitutional

lattice parameters increases), the enthalpy of solution increases. Effectively, when a larger
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Figure 9.1: Plot showing how the enthalpy of solution, Esol , for isovalent cation substitution into rock-

salt MO oxides, changes as a function of ε (equation 9.1). The hollow points in the plot represent those

determined using an empirical technique, whilst the solid points were determined using DFT.

cation is substituted onto a host lattice site, the surrounding ions are forced to move away to

accommodate the defect. Conversely, when a smaller cation is substituted onto a lattice site

the surrounding ions contract around the defect (these processes are illustrated in figure 9.2).

The greater the degree of relaxation the lattice must undergo to accommodate the substitutional

defect, the greater the enthalpy of solution. As the charge on the host and substitutional cation

are identical, when ε = 0, the enthalpy of solution is, of course, zero.

By fitting a quadratic function (of the form, E = mε2 + nε + o) to each of the data sets (Mott-

Littleton, Supercell 2×2×2 and 3×3×3 and DFT) it is possible to: i) assess to what extent

the different approaches are predicting similar results and ii) allow predictions of the enthalpy

of solution for divalent cation substitution into rocksalt oxides for other combinations of host

and substitute cations, as long as the lattice parameter of the host lattice and the substitutional

rocksalt oxide are known.

The quadratic function parameters, reported in table 9.1, show that there is excellent agreement

between the empirical pair potential data and that obtained using DFT, particularly in the region

immediately surrounding the origin. As the difference in the size of the host and substitutional

cation increases, the strain field due to the resulting defects increases, therefore the extent to
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which the strain fields of the defect images, in neighbouring supercells, will overlap. This is

particularly evident for larger separations between the hollow points circled in figure 9.1. The

enthalpy of solution, Esol , predicted by the Mott-Littleton methodology, represents a defect

that is truly at the dilute limit, so it is unsurprising to see that, as the size of the supercell

increases (from 2×2×2 to 3×3×3), and consequently the separation between defect images

increases, the predicted enthalpies of solution obtained from the supercell technique converge

towards the Mott-Littleton value (similar conclusions have been drawn by Jackson et al. [159]).

Nevertheless, the difference is relatively small and thus the 2×2×2 supercell, used in the DFT

simulations, is an adequate approximation to the dilute limit.

(a) (b)

Figure 9.2: Diagrams showing the effects of a substitutional cation (blue) with a larger ionic radius (a)

and one with a smaller ionic radius (b) on a host binary oxide (red spheres represent oxygen and the

yellow spheres represent the host cation).

Table 9.1: Coefficients; m and n for quadratic functions fitted to the equation E = mε2 +nε+o relating

strain, ε, and the internal energy of solution, Esol .

Model m n R2

Mott-Littleton 62.830 -0.489 0.996

Supercell (2×2×2) 61.240 -0.556 0.996

Supercell (3×3×3) 62.310 -0.496 0.996

DFT 54.847 0.624 0.794

The m parameters, reported in table 9.1, are all in the range 54-63 which reflects the good agree-

ment between the different techniques as shown in figure 9.1. Furthermore, the n parameters
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are all much smaller then the m parameters. It also follows that the energy curves are highly

symmetric about the y-axis (ie. Esol (ε)�Esol (−ε)). We next consider the extent to which the

defect volumes are also a symmetric function of ε.

9.3.2 Defect volume as a function of ε

As mentioned above, the larger the mismatch between the size of the host and substituent

cations, the greater the relaxation the lattice undergoes to accommodate substitutional disorder.

This relationship is highlighted in figure 9.3, where the normalised defect volume is plotted

against ε. This shows that when an ion is replaced by a like charged cation with a smaller

ionic radius, the lattice contracts around it, that is, the normalised defect volume is negative.

Conversely, when the substituent cation is larger, the normalised defect volume is positive and

so the crystal expands. Of course, the plot passes through the origin because, in the absence

of strain or electronic effects, there is no relaxation required when a cation is substituted by an

ion with the same charge and radius.

Figure 9.3: Plot showing how the normalised defect volume, VNDV , varies as a function of ε. The hollow

points in the plot represent those determined using an empirical technique, whilst the solid points were

determined using DFT.

The data presented in figure 9.3 predicts that the correlation between ε and the normalised

defect volume is somewhat non-linear: that is, the substitution of smaller cations leads to a
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smaller change in the volume of a crystal, for the same change in the magnitude of ε, than

substitution of a larger cation (or VNDV (ε)<VNDV (−ε)). This observation is distinct from the

conclusion drawn from figure 9.1, that the change in solution energy is symmetric (ie. either

a positive or negative change in ε, of equal magnitude, will require the same energy). To

investigate the symmetry issue further, the relationship between solution energy and defect

volume is illustrated in figure 9.4. This suggests that the energy penalty associated with a

reduction in the lattice volume, due to the substitution of a small cation onto a site previously

occupied by a large cation, is greater than for an expansion of the lattice of equal magnitude,

due to substitution of a larger cation on a smaller lattice site. This should be expected, due

in particular, to the increasing repulsion between the surrounding oxygen anions as they move

closer together, when contracting around the smaller substitutional cation.

Figure 9.3 shows that there is some divergence between the defect volumes determined using

the empirical and DFT simulations, particularly as the strain on the lattice increased. This is due

to the limitations of the more simple classical potential based technique, which overestimates

elastic constants and as such the simulated lattice is not representatively compliant.

Figure 9.4: Plot showing how the enthalpy of solution, Esol , varies as a function of the normalised defect

volume, VNDV . The hollow points in the plot represent those determined using an empirical technique,

whist the solid points were determined using DFT.
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9.4 Concluding comments

Using both empirical and quantum mechanical approaches we have examined changes in both

enthalpy of solution and the lattice volume arising from isovalent cation substitution into a

range of host materials that exhibit the rocksalt structure. Throughout, we analyse energy and

volume changes in terms of a lattice ‘strain’ related term, ε, that is defined as the difference

in the lattice parameter of the host and substitutional cation oxides divided by the host lattice

parameter (see equation 9.1). The following conclusions can be drawn:

• To a good approximation the enthalpy of solution increases proportionally to the square

of the strain term. As such, the solution enthalpy is symmetric about ε=0 (see figure 9.1).

• The volume change (defect volume) is less symmetric about ε=0 (see figure 9.3). That

is, smaller substitute cations give rise to proportionally smaller lattice contractions than

larger substitute cations give rise to lattice expansion. Figure 9.4 describes this in terms

of the energy penalty, where an incremental defect volume expansion is less energetically

costly than the same defect contraction.

Within this group of materials, that assume the rocksalt structure, these relationships are ‘gen-

eral’ and as such can be used to predict solution enthalpies and volume changes for other

combinations of host and substitute cations not simulated here. Equivalent relationships may

exist for aliovalent cation substitutions and for other host lattice crystal structures, although

these relationships would likely be different from those reported here.
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Conclusions and further work

10.1 Spinel

This thesis presents results of investigations into the types, concentrations and configurations

of the intrinsic point defects found in spinel and their role in processes such as mass transport

and the accommodation of nonstocihiometry. A number of simulation techniques have been

applied in order to gain an insight into the behaviour of the point defects in isolation and

examining the interactions between them.

Chapter 4 considered the structure and relative concentrations of the isolated point defects and

the effects of defect clustering. The lowest energy configuration for the interstitial defects in

spinel were predicted to be a complex split interstitial structure, as shown in figures 4.1 and 4.2,

rather than an interstitial ion located on an 8b Wyckoff site. A similar investigation by Gilbert

et al. [121], conducted using DFT, also concluded that split interstitial defects were lower in

energy than their isolated equivalent. There was further agreement between the simulations

conducted in this thesis and the parallel study by Gilbert et al. [121] as to which is the lowest

energy defect process in spinel. Both predicted that the reaction energy for the antisite process

(reaction 4.1) is an order of magnitude lower than the Frenkel and Schottky processes (reac-

tions 4.2 - 4.5). Consequently, the defect chemistry of spinel is dominated by the presence of

antisite defects. Clustering between the antisite defects present in the lattice and the interstitial

and vacancy defects leads to a decrease in the reaction energies of the Frenkel and Schottky

processes. Effectively, the presence of the antisite defects promotes an increase in the concen-

trations of interstitial and vacancy defects. A measure of the dominance of defects clustered
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with antisite defects compared to those found in isolation can be found in chapter 8. The ap-

proach adopted in chapter 8 assumes that the dominance of defect clustering can be attributed

to the binding energy between the antisite defect and the vacancy/interstitial defect. A more

rigorous approach would be to solve, simultaneously, all of the isolated and clustered Frenkel

and Schottky mass action equations (including a further equation to maintain overall charge

neutrality). This would show the absolute concentrations predicted by the model as a function

of temperature as well as allowing the calculation of the formation energy, E f , for each of the

intrinsic point defects in spinel. This mass action analysis should also be applied using the

reaction energies predicted using DFT, as it is expected that the use of a full charge model will

lead to an overestimation of the defect concentrations, particulary when oppositely charged

defects are clustered together. Once the formation energies for the intrinsic point defects are

known then they can be added to the migration energies, Em, obtained in chapters 5 and 6 to

obtain the overall activation energies, Ea, for magneisum, aluminium and oxygen transport.

The defect volume calculations shown in chapter 4 predict a positive defect volume (ie. the

crystal will expand) for the introduction of both isolated Mg�Al and Al•Mg defects, however, the

simulations also predict that the defect volume is negative for the introduction of a {Mg�Al:Al•Mg}×

cluster in the nearest neighbour configuration. Andreozzi et al. [43] predict that as the level

of inversion in spinel increases there is a slight decrease in the defect volume. This, therefore,

implies that there is at least some level of clustering between the antisite defects in spinel.

This assertion of clustered regions of antisite disorder in spinel is further supported by two sets

of simulations of Ball et al. [50]. In the first, that employed a mean field approach overesti-

mated the rate of change in the lattice parameter as a function of the level of inversion as this

approach assumes that all arrangements of antisite defect within a given cell are equally prob-

able. Conversely, when they used an approach that allowed near neighbour clusters to evolve,

the variation in the lattice parameter was correctly predicted. Although, the most energetically

favourable configuration for an antisite pair is to form a nearest neighbour configuration, how-

ever, it would be interesting to examine whether it continues to be favourable to build more

extended regions of antisite disorder. This can be achieved by determining the lowest energy

configuration for antisite clusters containing increasing numbers of antisite defects, and then

calculating the binding energy per antisite defect. A minimum (ie. most negative value) in

the binding energy per antisite defect will highlight the optimum size of a disordered region in

spinel (although this neglects the effects of entropy). It would also be appropriate to calculate
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the defect volume for the lowest energy antisite cluster configurations to allow comparison with

the experimental values.

In chapters 5, 6 and 7 the mechanisms of point defect mediated mass transport are discussed in

detail. Initially a static method was adopted to examine the diffusivity (ie. the ease with which

a defect can migrate) of the isolated defects by determining the migration energies, Em, and

the diffusion prefactor, D0. The O��
i interstitial defect was found to be the most mobile defect

in spinel with a migration energy of 0.16 eV. Therefore, assuming that the concentrations of

the point defects are all equivalent, oxygen will be the most mobile ion in spinel. Of the

cations, Mg2+ was found to be more mobile than Al3+. Interestingly, the migration energy

for Al3+ diffusion was predicted to be lowest via an Al•Mg defect migrating via a V��
Mg defect

on the magnesium sublattice. Whilst the diffusion prefactors for each process were calculated

they did not lead to a significant reordering of the defect mobility. There was, however, one

significant assumption applied when determining the diffusion prefactors, which was that the

correlation factor for all processes will be unity. While it is expected that the values for all

processes will be in the region 0.4 - 1.0 [21], it would clearly be desirable to determine these

terms explicitly, particularly for Al•Mg migration via a vacancy mechanism on the magnesium

sublattice.

Oxygen interstitial migration was discussed in detail in chapter 6 and a migration energy for

O��
i transport was determined to be 0.16 eV. In order for the O��

i interstitial defect to migrate

in 3D the split O��
i -V••

0 -O��
i defect must rotate to access other �11̄0� directions. Uberuaga et

al. [116] predicted two rotation mechanisms with migration energies of 0.64 eV and 0.67 eV.

Unfortunately, due to the strong forces acting on the oxygen ion in the region of the saddle point

the core and shell in the simulations decoupled and it was not possible to determine equivalent

migration energies using a model that included the effects of polarisation. It is possible to

strengthen the interaction between the oxygen core and shell by means of a k4 term added

to the spring constant (equation 3.11). Unfortunately, this additional stiffening of the force

constant acting between the oxygen core and shell will have a minor affect on the defect and

lattice energies. The oxygen interstitial rotation barriers should be calculated by adding this

additional parameter, however, similar simulations should also then be conducted on the other

diffusion processes so the impact on other migration energies can be predicted consistently.

The empirical pair potential based approach, employed in the static lattice simulations dis-
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cussed in chapters 5 and 6 and the TAD simulations presented in chapter 7, assume that a full

charge model is appropriate for examining the migration processes of point defects in spinel.

DFT simulations of the charge density of spinel have suggested that the charges in spinel are

in fact closer to 1.78 |e|, 2.56 |e| and -1.73 |e| for magnesium, aluminium and oxygen ions

respectively, therefore, the full charge model adopted here will overestimate the Coulombic

interaction between the defects and the surrounding perfect lattice, which in turn, will affect

the migration energies. This problem could be overcome by developing a partial charge model,

however, there is still a level of complexity which cannot be modeled using an empirical based

method. The empirical potential approach used here assumes fixed charges and so will not

account for any changes in the charge states of the migrating ion and the immediate surround-

ings. In order to account for any charge transfer processes as well as any other electronic effects

which occur when ions migrate, DFT nudged elastic band simulations should be performed.

Clustering of point defects was shown to have a significant impact on the thermodynamics of

the intrinsic defect concentrations. Chapter 7, investigated how defect clustering can also influ-

ence defect diffusion. In general, clustering of defects was predicted to impede diffusion, par-

ticularly when vacancy and interstitial defects become clustered to the highly immobile antisite

defects. There was, however, one notable exception; the migration energy for Mg••
i diffusion

was reduced by the presence of an O��
i defect. This type of cooperative diffusion mechanism

has also been observed using TAD in MgO [137,143]. Unfortunately, there appears to be some

disagreement between the TAD simulation of a spinel supercell containing an Al•Mg defect an

a V��
Mg defect with the assertion in chapter 5 which predicts that Al3+ will preferentially mi-

grate via a vacancy mechanism on the magnesium sublattice. In the TAD simulation the Al•Mg

defect is not predicted to migrate during the 17.5 ns simulation but the V���
Al defect is predicted

to migrate after 15 ns (both simulations employed the same Thigh and Tlow). It is not immedi-

ately obvious whether this discrepancy is a result of the inclusion of the shell model in chapter

5 but not in the TAD simulations. Currently the TAD code is not able to incorporate a shell

model, however, this modification should be made. Once this has been carried out the cluster

simulations presented in chapter 7 should be repeated.

Chapter 7 examined very simple dimer clusters, however, it has already been shown that the

point defects in spinel can, and in fact are likely to, form clusters that are larger than those ex-

amined. In its current form, the TAD code can only be applied to relatively small systems as it

is not currently configured to run in parallel. Therefore, when modeling larger systems, which
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involve not only defect-defect interactions but cluster-cluster interactions, a different simula-

tion technique may be more appropriate. Kinetic Monte Carlo (KMC) [101] is a simulation

technique that can be applied to follow the evolution of large systems to comparatively very

long times scales. One of the drawbacks to KMC is that it is unable to evolve a system without

some prior knowledge of the migration energies of the defects/clusters. This information can

be obtained by performing a basin constrained MD simulation [99] (similar to that performed

in the TAD simulations in chapter 7) and creating a library of possible transitions. Clearly,

given the significant increase in the number of migration barriers obtain from dimer clusters in

chapter 7, this is likely to require the formation of a very significant library of migration ener-

gies. Ideally, it would be useful if the KMC code could generate migration energies on the fly,

possibly by creating a small basin constrained MD simulation, should it encounter an arrange-

ment of defects it does not already have in its library. Once the library has been made, a large

KMC simulation, containing a number of defects representative of the relative concentrations

determined from the mass action analysis discussed above, should be run.

The results presented in chapter 8 suggest that the most favourable mechanism for accom-

modation of excess Al2O3 is via Al•Mg defects clustered to charge compensating V���
Al defects.

Accommodation of excess MgO is expected to be achieved by incorporation of Mg�Al defects

in clusters charge compensated by both V••
O and V��

Mg defects. At low levels of Al2O3 or MgO

excess the clustering between defects would be expected to be lower than at higher concen-

trations, simply because there are fewer defects in the crystal to cluster together, however, as

deviation from a stoichiometric ratio increases the level of clustering would also be expected

to increase. This can be examined in more detail by performing a mass action analysis of the

defects associated with Al2O3 and MgO excess, across a wide temperature range, assuming

that the concentration of antisite defects is controlled by the degree of nonstoichiometry.

The damage cascade simulations of Bacorisen et al. [74] compared the evolution of radiation

induced defects in MgAl2O4, MgIn2O4 and MgGa2O4. They concluded that more of the radi-

ation induced damage is retained the higher the degree of inversion present in the initial spinel

lattice. However, in addition to changing the level of inversion they also changed the chem-

istry of the lattice by changing the trivalent cation specie. Therefore, it would be interesting to

investigate the level of retained damage after a thermal spike as a function of cation version in

MgAl2O4 alone.
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10.2 Cation substitution

In chapter 9, iso cation substitution into rocksalt metal oxide materials was studied. For iso-

valent cation substitution of divalent cations into rocksalt metal oxides it was shown that as

the magnitude of the size difference between the substitute and host cations increases the in-

ternal energy of solution for the substitution process increases. The simulations also predict

that substitution of a host cation with an alternative cation of smaller ionic radius, results in a

smaller change in the volume of the crystal compared to substitution of a cation that is an equal

magnitude larger. Therefore, the energy change resulting from the contraction about the substi-

tutional defect is greater than for the equivalent expansion, due to anharmonic variation of the

ion-ion interaction energies. The generality of the trends observed here could be investigated

by substituting a number of other divalent cations in the rocksalt oxides considered above or by

examining isovalent cation substitution into another MO crystal structure, such as the wurtzite

structure (eg. ZnO).

Aliovalent cation substitution occurs when there is a charge difference between the substitu-

tional defect and the host cation it replaces. In order to maintain overall charge neutrality of the

crystal, the substitutional defect must also be accompanied by other oppositely charged intrin-

sic defects. An investigation, similar to the one carried ont in chapter 9, but this time focused

on aliovalent cation substitution into the rocksalt oxides, would illustrate the combined effects

of charge and size mismatches for cation substitution.
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A
Kröger-Vink Notation

Kröger-Vink notation is a set of conventions used to describe electrical charge and lattice for

point defect species in crystals [15]. There are three main parts to the notation; the main body,

the subscript and the superscript. The body represents the chemistry of the defect and can by

the chemical symbol for an ion (eg. Mg for a magnesium ion) or a V for a vacant lattice site.

The subscript represents the location of the defect. Should the defect be located on a lattice site

then its location is denoted by the symbol for the atom it has replaced, however, if the defect

is positioned on an interstitial site it is denoted with a (i). Finally the superscript represents the

charge on the defect; a positive charge is denoted using a (•), a negative charge is denoted by

a (�) and a neutral defect is assigned a (×). Some examples of Kröger-Vink notation for point

defects in a metal oxide, MO, are given in the table below:

Table A.1: Examples of Kröger-Vink notation

Defect Kröger-Vink notation

Cation Vacancy V ��
M

Oxygen Vacancy V••
O

Cation Interstitial M��
i

Oxygen Interstitial O••
i

Cation on an M••••
O

oxygen site
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B
Spinel Lattice Sites

Table B.1 is a list of the fractional coordinates of the atoms in a spinel unit cell based on the

Fd3m space group centred on 4̄3m.

Table B.1: Fractional coordinates of lattices sites in the cubic unit cell of spinel.

Lattice site Equipoint Point Fractional coordinates

symmetry of lattice sites

A-site cation (Mg2+) 8a 4̄3m 0,0,0; 1/4,1/4,1/4

B-site cation (Al3+) 16d 3̄m 5/8,5/8,5/8; 5/8,7/8,7/8;

7/8,5/8,7/8; 7/8,7/8,5/8

Anion (O2−) 32e 3m u,u,u; u,ū,ū; ū,u,ū; ū,ū,u;

(1/4-u),(1/4-u),(1/4-u));

(1/4+u),(1/4+u),(1/4-u));

(1/4+u),(1/4-u),(1/4+u));

(1/4-u),(1/4+u),(1/4+u));
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